首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1420篇
  免费   73篇
  国内免费   1篇
化学   1026篇
晶体学   3篇
力学   28篇
数学   223篇
物理学   214篇
  2024年   5篇
  2023年   33篇
  2022年   34篇
  2021年   32篇
  2020年   57篇
  2019年   64篇
  2018年   29篇
  2017年   29篇
  2016年   68篇
  2015年   60篇
  2014年   50篇
  2013年   59篇
  2012年   99篇
  2011年   93篇
  2010年   54篇
  2009年   33篇
  2008年   61篇
  2007年   77篇
  2006年   68篇
  2005年   73篇
  2004年   57篇
  2003年   28篇
  2002年   26篇
  2001年   9篇
  2000年   13篇
  1999年   15篇
  1998年   12篇
  1997年   13篇
  1996年   13篇
  1994年   7篇
  1993年   9篇
  1992年   5篇
  1990年   6篇
  1988年   6篇
  1987年   6篇
  1986年   11篇
  1985年   7篇
  1983年   6篇
  1982年   9篇
  1980年   9篇
  1979年   10篇
  1976年   14篇
  1975年   5篇
  1973年   12篇
  1969年   7篇
  1968年   5篇
  1966年   5篇
  1934年   5篇
  1932年   5篇
  1883年   6篇
排序方式: 共有1494条查询结果,搜索用时 15 毫秒
51.
The rheological properties of carboxymethylated nanofibrillated cellulose (NFC), investigated with controlled shear rate- and oscillatory measurements, are reported for the first time. It was shown that the rheological properties of the studied system are similar to those reported for other NFC systems. The carboxymethylated NFC systems showed among other things high elasticity and a shear thinning behaviour when subjected to increasing shear rates. Further, the shear viscosity and storage modulus of the system displayed power-law relations with respect to the dry content of the NFC suspension. The exponential values, 2 and 2.4 respectively, were found to be in good agreement with both theoretical predictions and published experimental work. Furthermore, it was found that the pulp consistency at which NFC is produced affects the properties of the system. The rheological studies imply that there exists a critical pulp concentration below which the efficiency of the delamination process diminishes; the same adverse effect is also observed when the critical concentration is significantly exceeded due to a lower energy input during delamination.  相似文献   
52.
The adsorption of organic molecules onto the close‐packed facets of coinage metals is studied, and how accurately adsorption heights can be described by using recent advances of the van der Waals density functional (vdWDF), with optPBE/vdWDF, optB86b/vdWDF, vdWDF2, and rev/vdWDF2 functionals is illustrated. The adsorption of two prototypical aromatic hydrocarbons is investigated, and the calculated adsorption heights are compared to experimental literature values from normal incident X‐ray standing wave absorption and a state‐of‐the‐art semi‐empirical method. It is shown that both the optB86b/vdWDF and rev/vdWDF2 functionals describe adsorption heights with an accuracy of 0.1 Å, compared to experimental values, and are concluded as reliable methods of choice for related systems.  相似文献   
53.
The combination of the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction with sol–gel processing enables the versatile preparation of sol–gel materials under different shapes with targeted functionalities through a diversity-oriented approach. In this account, the development of the CuAAC reaction under anhydrous conditions for the synthesis of sol–gel precursors and for the assembling of magnetic nanoparticles on self-assembled monolayers is related, as well as the use of the classical CuAAC methodologies for the functionalization of mesoporous silica nanoparticles and microdots arrays. Coupling CuAAC and Sol–Gel will result in simplified preparations of multifunctional materials with controlled morphologies.  相似文献   
54.
A new CE method with ultraviolet–visible detection was developed in this study to investigate manganese dissolution in lithium ion battery electrolytes. The aqueous running buffer based on diphosphate showed excellent stabilization of labile Mn3+, even under electrophoretic conditions. The method was optimized regarding the concentration of diphosphate and modifier to obtain suitable signals for quantification. Additionally, the finally obtained method was applied on carbonate-based electrolytes samples. Dissolution experiments of the cathode material LiNi0.5Mn1.5O4 (lithium nickel manganese oxide [LNMO]) in aqueous diphosphate buffer at defined pH were performed to investigate the effect of a transition metal-ion-scavenger on the oxidation state of dissolved manganese. Quantification of both Mn species revealed the formation of mainly Mn3+, which can be attributed to a comproportionation reaction of dissolved and complexed Mn2+ with Mn4+ at the surface of the LNMO structure. It was also shown that the formation of Mn3+ increased with lower pH. In contrast, dissolution experiments of LNMO in carbonate-based electrolytes containing LIPF6 showed only dissolution of Mn2+.  相似文献   
55.
Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov α-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
56.
A method for the synthesis of benzylsilanes starting from the corresponding ammonium triflates is reported. Silyl boronic esters are employed as silicon pronucleophiles, and the reaction is catalyzed by copper(I) salts. Enantioenriched benzylic ammonium salts react stereospecifically through an SN2‐type displacement of the ammonium group to afford α‐chiral silanes with inversion of the configuration. A cyclopropyl‐substituted substrate does not undergo ring opening, thus suggesting an ionic reaction mechanism with no benzyl radical intermediate.  相似文献   
57.
Realizing the full potential of oxide‐supported single‐atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one‐pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization‐hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double‐bond migration and anti‐Markovnikov α‐olefin hydrosilylation, respectively. First‐principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single‐pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio‐selectivity (>95 %) even from industrially‐relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide‐supported single‐atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
58.
59.
The oxidation of CO is the archetypal heterogeneous catalytic reaction and plays a central role in the advancement of fundamental studies, the control of automobile emissions, and industrial oxidation reactions. Copper‐based catalysts were the first catalysts that were reported to enable the oxidation of CO at room temperature, but a lack of stability at the elevated reaction temperatures that are used in automobile catalytic converters, in particular the loss of the most reactive Cu+ cations, leads to their deactivation. Using a combined experimental and theoretical approach, it is shown how the incorporation of titanium cations in a Cu2O film leads to the formation of a stable mixed‐metal oxide with a Cu+ terminated surface that is highly active for CO oxidation.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号