首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1280篇
  免费   59篇
  国内免费   1篇
化学   926篇
晶体学   2篇
力学   24篇
数学   199篇
物理学   189篇
  2024年   5篇
  2023年   32篇
  2022年   32篇
  2021年   30篇
  2020年   55篇
  2019年   64篇
  2018年   29篇
  2017年   29篇
  2016年   66篇
  2015年   58篇
  2014年   47篇
  2013年   54篇
  2012年   97篇
  2011年   88篇
  2010年   51篇
  2009年   32篇
  2008年   58篇
  2007年   75篇
  2006年   65篇
  2005年   71篇
  2004年   52篇
  2003年   25篇
  2002年   24篇
  2001年   8篇
  2000年   7篇
  1999年   14篇
  1998年   9篇
  1997年   11篇
  1996年   9篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   6篇
  1986年   10篇
  1985年   5篇
  1983年   6篇
  1981年   3篇
  1980年   6篇
  1979年   9篇
  1976年   10篇
  1975年   5篇
  1973年   10篇
  1969年   3篇
  1968年   3篇
  1934年   3篇
  1932年   3篇
  1922年   2篇
排序方式: 共有1340条查询结果,搜索用时 15 毫秒
121.
A new CE method with ultraviolet–visible detection was developed in this study to investigate manganese dissolution in lithium ion battery electrolytes. The aqueous running buffer based on diphosphate showed excellent stabilization of labile Mn3+, even under electrophoretic conditions. The method was optimized regarding the concentration of diphosphate and modifier to obtain suitable signals for quantification. Additionally, the finally obtained method was applied on carbonate-based electrolytes samples. Dissolution experiments of the cathode material LiNi0.5Mn1.5O4 (lithium nickel manganese oxide [LNMO]) in aqueous diphosphate buffer at defined pH were performed to investigate the effect of a transition metal-ion-scavenger on the oxidation state of dissolved manganese. Quantification of both Mn species revealed the formation of mainly Mn3+, which can be attributed to a comproportionation reaction of dissolved and complexed Mn2+ with Mn4+ at the surface of the LNMO structure. It was also shown that the formation of Mn3+ increased with lower pH. In contrast, dissolution experiments of LNMO in carbonate-based electrolytes containing LIPF6 showed only dissolution of Mn2+.  相似文献   
122.
The prototypical reactivity profiles of transition metal dihydrogen complexes (M-H2) are well-characterized with respect to oxidative addition (to afford dihydrides, M(H)2) and as acids, heterolytically delivering H+ to a base and H to the metal. In the course of this study we explored plausible alternative pathways for H2 activation, namely direct activation through H-atom or hydride transfer from the σ-H2 adducts. To this end, we describe herein the reactivity of an isostructural pair of a neutral S= and an anionic S=0 Co-H2 adduct, both supported by a trisphosphine borane ligand (P3B). The thermally stable metalloradical, (P3B)Co(H2), serves as a competent precursor for hydrogen atom transfer to tBu3ArO. What is more, its anionic derivative, the dihydrogen complex [(P3B)Co(H2)]1−, is a competent precursor for hydride transfer to BEt3, establishing its remarkable hydricity. The latter finding is essentially without precedent among the vast number of M-H2 complexes known.  相似文献   
123.
Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov α-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
124.
125.
Superhydrophobic aluminum surfaces with excellent corrosion resistance were successfully prepared by electrospinning of a novel fluorinated diblock copolymer solution. Micro- and nanostructuration of the diblock copolymer coating was obtained by electrospinning which proved to be an easy and cheap electrospinning technology to fabricate superhydrophobic coating. The diblock copolymer is made of poly(heptadecafluorodecylacrylate-co-acrylic acid) (PFDA-co-AA) random copolymer as the first block and polyacrylonitrile (PAN) as the second one. The fluorinated block promotes hydrophobicity to the surface by reducing the surface tension, while its carboxylic acid functions anchor the polymer film onto the aluminum surface after annealing at 130 °C. The PAN block of this copolymer insures the stability of the structuration of the surface during annealing, thanks to the infusible character of PAN. It is also demonstrated that the so-formed superhydrophobic coating shows good adhesion to aluminum surfaces, resulting in excellent corrosion resistance.  相似文献   
126.
We present the use of a simple microfluidic technique to separate living parasites from human blood. Parasitic trypanosomatids cause a range of human and animal diseases. African trypanosomes, responsible for human African trypanosomiasis (sleeping sickness), live free in the blood and other tissue fluids. Diagnosis relies on detection and due to their often low numbers against an overwhelming background of predominantly red blood cells it is crucial to separate the parasites from the blood. By modifying the method of deterministic lateral displacement, confining parasites and red blood cells in channels of optimized depth which accentuates morphological differences, we were able to achieve separation thus offering a potential route to diagnostics.  相似文献   
127.
128.
A laser-induced fluorescence in graphite furnace (LIF-GF) set-up has been equipped with an intensified CCD detector (ICCD) that enables simultaneous multichannel detection of large wavelength regions. The main advantages of such a system in comparison with conventional photomultiplier detection are: simultaneous detection of several fluorescence wavelengths for easy characterization of excitation and fluorescence spectra and for an increase of the absolute sensitivity and spectral selectivity; simultaneous monitoring of background signals, such as those due to matrix interferences, blackbody radiation and scattered laser light; decrease of the susceptibility to radio-frequency pick-ups emitted from the pump laser due to the delayed read-out procedure; time-resolved studies of fluorescence spectra for improved elemental selectivity or for studies of atomization processes, and a possibility to perform two-dimensional imaging of height distributions of atomization and, in combination with an imaging spectrometer, diffusion processes in the furnace. The first work on LIF-GF with ICCD detection has been performed on Ni. The most sensitive and versatile excitation and detection wavelengths have been identified. Detection limits in water solutions by the LIF-GF technique have been improved by two orders of magnitude and are found to be 0.015 pg with ICCD and 0.01 pg using a photomultiplier at the most sensitive excitation and detection wavelengths. Nickel in concentrations has been detected in aqueous standard reference samples with sodium concentrations ranging from to % (riverine water and estuarine water) with good accuracy and precision. The Ni contents of standard riverine and estuarine water were determined to 1.00 ± 0.11 and 0.75 ± 0.07 ng/ml, respectively. The certified concentrations are 1.03 ± 0.10 and 0.743 ± 0.078 .  相似文献   
129.
Small molecules are used in the G‐quadruplex (G4) research field in vivo and in vitro, and there are increasing demands for ligands that selectively stabilize different G4 structures. Thioflavin T (ThT) emits an enhanced fluorescence signal when binding to G4 structures. Herein, we show that ThT can be competitively displaced by the binding of small molecules to G4 structures and develop a ThT‐displacement high‐throughput screening assay to find novel and selective G4‐binding compounds. We screened approximately 28 000 compounds by using three different G4 structures and identified eight novel G4 binders. Analysis of the structural conformation and stability of the G4 structures in presence of these compounds demonstrated that the four compounds enhance the thermal stabilization of the structures without affecting their structural conformation. In addition, all four compounds also increased the G4‐structure block of DNA synthesis by Taq DNA polymerase. Also, two of these compounds showed selectivity between certain Schizosaccharomyces pombe G4 structures, thus suggesting that these compounds or their analogues can be used as selective tools for G4 DNA studies.  相似文献   
130.
A series of bis(terpyridine)RuII complexes have been prepared, where one of the terpyridines is functionalized in the 4'-position by a phosphonic or carboxylic acid group for attachment to TiO2. The other is functionalized, also in the 4'-position, by a potential electron donor. In complexes 1a, 3a, and 4a,b, this donor is tyrosine or hydrogen-bonded tyrosine, while in 2a it is carotenoic amide. The synthesis and photophysical properties of the complexes are discussed. On irradiation with visible light, the formation of a long-lived charge-separated state was anticipated, via primary electron ejection into the TiO2, followed by secondary electron transfer from the donor to the photogenerated RuIII. However, such a charge-separated state could be observed with certainty only with complex 2a. To explain the result, quantum chemical calculations were performed on the different types of complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号