首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   893篇
  免费   12篇
  国内免费   2篇
化学   531篇
晶体学   6篇
力学   24篇
数学   84篇
物理学   262篇
  2021年   6篇
  2020年   5篇
  2018年   10篇
  2016年   16篇
  2015年   18篇
  2014年   16篇
  2013年   39篇
  2012年   43篇
  2011年   36篇
  2010年   29篇
  2009年   16篇
  2008年   30篇
  2007年   35篇
  2006年   38篇
  2005年   39篇
  2004年   28篇
  2003年   21篇
  2002年   30篇
  2001年   25篇
  2000年   32篇
  1999年   16篇
  1997年   7篇
  1996年   14篇
  1995年   13篇
  1994年   24篇
  1993年   15篇
  1992年   20篇
  1991年   15篇
  1990年   12篇
  1989年   13篇
  1988年   16篇
  1987年   8篇
  1986年   13篇
  1985年   12篇
  1984年   9篇
  1982年   12篇
  1981年   18篇
  1980年   13篇
  1979年   9篇
  1978年   9篇
  1977年   12篇
  1976年   12篇
  1975年   8篇
  1974年   7篇
  1973年   7篇
  1972年   12篇
  1971年   6篇
  1969年   5篇
  1918年   4篇
  1908年   4篇
排序方式: 共有907条查询结果,搜索用时 0 毫秒
901.
The photochemistry and photophysics of several psoralens and coumarins have been examined in human serum albumin (HSA) complexes and dimyristoylphosphatidylcholine (DMPC) vesicles. Fluorescence spectroscopy indicates that there are multiple binding sites with polarities that are intermediate between those of acetonitrile and water for the substrates complexed to HSA. In the case of the 6,7-dimethoxycoumarin-HSA complex, laser flash photolysis experiments provide evidence for the formation of radical cation in addition to triplet. Radical cations are not detected for other coumarin-HSA complexes, either due to a lower yield of formation or to rapid reaction of an initial radical cation with adjacent amino acids. Fluorescence spectra for coumarins indicate that they are primarily solubilized in the polar headgroup region in DMPC vesicles. Consistent with this, radical cations generated by photoionization are detected in transient experiments. For dimethoxycoumarins the radical cation is long-lived, indicating rapid exit from the vesicle and decay in the aqueous phase. However, 4,5',8-trimethylpsoralen and 7-ethoxy-4-hexadecylcoumarin radical cations are much shorter-lived, presumably due to rapid decay by electron recombination in the vesicle. The results for both HSA complexes and vesicles indicate that radical ions may play a role in psoralen and coumarin photochemistry in a cellular environment.  相似文献   
902.
Electrostatic repulsion stabilizes micrometer-sized water droplets with spacings greater than 10 microm in an ultralow dielectric medium, CO2 (epsilon = 1.5), at elevated pressures. The morphology of the water/CO2 emulsion is characterized by optical microscopy and laser diffraction as a function of height. The counterions, stabilized with a nonionic, highly branched, stubby hydrocarbon surfactant, form an extremely thick double layer with a Debye screening length of 8.9 microm. As a result of the balance between electrostatic repulsion and the downward force due to gravity, the droplets formed a hexagonal crystalline lattice at the bottom of the high-pressure cell with spacings of over 10 microm. The osmotic pressure, calculated by solving the Poisson-Boltzmann equation in the framework of the Wigner-Seitz cell model, is in good agreement with that determined from the sedimentation profile measured by laser diffraction. Thus, the long-ranged stabilization of the emulsion may be attributed to electrostatic stabilization. The ability to form new types of colloids in CO2 with electrostatic stabilization is beneficial because steric stabilization is often unsatisfactory because of poor solvation of the stabilizers.  相似文献   
903.
A nonionic-methylated branched hydrocarbon surfactant, octa(ethylene glycol) 2,6,8-trimethyl-4-nonyl ether (5b-C12E8) emulsifies up to 90% CO2 in water with polyhedral cells smaller than 10 microm, as characterized by optical microscopy. The stability of these concentrated CO2/water (C/W) emulsions increases with pressure and in some cases exceeds 24 h. An increase in pressure weakens the attractive van der Waals interactions between the CO2 cells across water and raises the disjoining pressure. It also enhances the solution of the surfactant tail and drives the surfactant from water towards the water-CO2 interface, as characterized by the change in emulsion phase behavior and the decrease in interfacial tension (gamma) to 2.1 mN/m. As the surfactant adsorption increases, the greater tendency for ion adsorption is likely to increase the electrostatic repulsion in the thin lamellae and raise the disjoining pressure. As pressure increases, the increase in disjoining pressure and decrease in the capillary pressure (due to the decrease in gamma) each favor greater stability of the lamellae against rupture. The electrical conductivity is predicted successfully as a function of Bruggeman's model for concentrated emulsions. Significant differences in the stability are observed for concentrated C/W emulsions at elevated pressure versus air/W or C/W foams at atmospheric pressure.  相似文献   
904.
Four chain extended homologues of salacinol, a naturally occurring glycosidase inhibitor, were prepared for evaluation as inhibitors of glucosidase enzymes involved in the breakdown of carbohydrates. The syntheses involved the reactions of 1,4-anhydro-2,3,5-tri-O-benzyl-4-thio-D-arabinitol with cyclic sulfate derivatives of different monosaccharides. Debenzylation of the products afforded the novel sulfonium sulfate derivatives of D-glucose, D-galactose, D-arabinose, and D-xylose that are of interest in their own right as glycosidase inhibitors. Reduction to the corresponding alditols then afforded the homologues of salacinol containing polyhydroxylated, acyclic chains of 5- and 6-carbons, differing in stereochemistry at the stereogenic centers. Three of the chain-extended homologues inhibited recombinant human maltase glucoamylase, one of the key intestinal enzymes involved in the breakdown of glucose oligosaccharides in the small intestine, with Ki values in the low micromolar range, of approximately the same magnitude as salacinol, thus providing lead candidates for the treatment of Type 2 diabetes.  相似文献   
905.
Ray tracing in the presence of linear mode conversion leads to a ‘splitting’ of an incoming ray into two outgoing rays. When the rays are confined to a cavity, the rays can re-enter the conversion region many times, leading to iterated conversion. In this paper, we present new methods for the analysis of this problem. These involve a shift from local to global methods of analysis, and a shift in emphasis from the study of ray evolution in the dispersion surface to the study of the iterated dynamics of rays crossing the conversion surface. The analytical methods are quite general and can be applied in phase spaces of arbitrary dimension. In two spatial dimensions, (xy), i.e. with a four-dimensional ray space, (xykxky), rays are confined to three-dimensional regions called rooms, with one room for each wave type. In these rooms the rays do not cross, but when they intersect the conversion surface a family of converted rays is produced in the other room. The use of rooms allows a full view of the phase space dynamics of the iterated conversion of ray families. A simple two-dimensional model, inspired by the Budden resonance model, is presented as an example of these ideas.  相似文献   
906.
The microbial free single crystals of α and γ glycine were grown from gel at room temperature in a new chemical route. These crystals showed a superior quality than the solution grown crystals. The metastable α-form and the stable γ-form of glycine were crystallized in silica gel by solubility reduction method. The form of crystallization is confirmed by single crystal and powder X-ray diffraction analyses. The crystals of α and γ glycine were found to crystallize in monoclinic and hexagonal crystal systems, respectively. For analyzing the functional group and thermal stability of α and γ glycine crystals, spectroscopic and thermal analyses have been carried out. The dielectric studies were performed to find the dielectric constant of the grown crystals and the results are discussed. Second harmonic generation efficiency of the crystal was measured by Kurtz’s powder method using Nd:YAG laser and it was found to be 2.68 times that of potassium dihydrogen phosphate crystals.  相似文献   
907.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号