首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4977篇
  免费   94篇
  国内免费   29篇
化学   2627篇
晶体学   48篇
力学   168篇
数学   929篇
物理学   1328篇
  2020年   42篇
  2019年   39篇
  2018年   29篇
  2017年   30篇
  2016年   64篇
  2015年   57篇
  2014年   74篇
  2013年   221篇
  2012年   189篇
  2011年   256篇
  2010年   113篇
  2009年   101篇
  2008年   203篇
  2007年   192篇
  2006年   206篇
  2005年   204篇
  2004年   152篇
  2003年   146篇
  2002年   139篇
  2001年   134篇
  2000年   112篇
  1999年   75篇
  1998年   49篇
  1997年   64篇
  1996年   81篇
  1995年   79篇
  1994年   101篇
  1993年   104篇
  1992年   93篇
  1991年   88篇
  1990年   75篇
  1989年   84篇
  1988年   58篇
  1987年   74篇
  1986年   58篇
  1985年   102篇
  1984年   82篇
  1983年   49篇
  1982年   74篇
  1981年   70篇
  1980年   61篇
  1979年   69篇
  1978年   72篇
  1977年   56篇
  1976年   67篇
  1975年   65篇
  1974年   69篇
  1973年   101篇
  1972年   38篇
  1971年   31篇
排序方式: 共有5100条查询结果,搜索用时 156 毫秒
201.
An automated sample preparation for high throughput accurate mass determinations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been developed. Sample preparation was performed with an automated workstation and automated mass analyses were performed with a commercial MALDI-TOF mass spectrometer. The method was tested with a 41-sample library. MALDI-TOFMS was found to give the needed sensitivity, accurate mass measurement, and soft ionization necessary for structure confirmation, even of mixtures. A mass accuracy of 5 ppm or less was obtained in over 80% of known compound measurements. A mass accuracy better than 10 ppm was obtained for all measurements of known compounds. Analyses of parallel synthesis products resulted in 77% of the measurements with a mass accuracy of 5 ppm or better.  相似文献   
202.
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002  相似文献   
203.
To meet growing needs for high throughput gene expression profiling, we established a new automated high throughput TaqMan RT-PCR method for quantitative mRNA expression analysis. In this method, the Allegro( trade mark ) (Zymark) system conducts all sample tracking and liquid handling steps, and ABI PRISM 7900 HT (Applied Biosystems) is used to conduct real-time determination of the C(t) value when amplification of PCR products is first detected and accumulation of inhibitory PCR products is unlikely to occur. The ABI PRISM 7900 HT Sequence Detection System features a real-time PCR instrument with 384-well-plate compatibility and robotic loading, and continuous wavelength detection, which enables the use of multiple fluorophores in a single reaction. The Allegro System offers an assembly line approach with a modular design that allows reconfiguration of the components to accommodate variations in the assay flow. In the present study, we have established and validated a new automated High Throughput (HT) TaqMan RT-PCR- based method for quantitative mRNA expression analysis. The data demonstrate that HT-Taqman PCR is a powerful tool that can be used for measuring low concentrations of mRNA, and is highly accurate, reproducible, and amenable to high throughput analysis. Results suggest that HT-TaqMan is a reliable method for the quantification of low-expression genes and a powerful tool with HT capability for target identification/validation, structure-activity relationship (SAR) study, compound selection for efficacy studies, and biomarker identification in drug discovery and development.  相似文献   
204.
A reinvestigation of sponge natural products from additional Indo-Pacific collections of Xestospongiacf. carbonaria and X. cf. exigua has provided further insights on the structures, biological activities, and biosynthetic origin of bisannulated acridines. These alkaloids include one known pyridoacridine, neoamphimedine (2), and three new analogues, 5-methoxyneoamphimedine (4), neoamphimedine Y (5), and neoamphimedine Z (6). A completely new acridine, alpkinidine (7), was also isolated. A disk diffusion soft agar assay, using a panel of five cancer cell lines (solid tumors and leukemias) and two normal cells, was used to evaluate the differential cytotoxicity (solid tumor selectivity) of the sponge semipure extracts and selected compounds including amphimedine (1), 2, 4, and 7. While all four compounds were solid tumor selective, 1 and 2 were the most potent and 4 was the most selective. The rationale used to characterize the new structures is outlined along with the related biosynthetic pathways envisioned to generate 2 and 7.  相似文献   
205.
Treatment of N-(2-mercaptoethyl)-1,8-naphthalimide (HL) with stoichiometric amounts of AsCl(3) and base affords AsL(2)Cl and AsL(3) complexes stabilized in part by secondary As...O bonding interactions.  相似文献   
206.
Metal–organic frameworks constructed from multiple (≥3) components often exhibit dramatically increased structural complexity compared to their 2 component (1 metal, 1 linker) counterparts, such as multiple chemically unique pore environments and a plurality of diverse molecular diffusion pathways. This inherent complexity can be advantageous for gas separation applications. Here, we report two isoreticular multicomponent MOFs, bMOF-200 (4 components; Cu, Zn, adeninate, pyrazolate) and bMOF-201 (3 components; Zn, adeninate, pyrazolate). We describe their structures, which contain 3 unique interconnected pore environments, and we use Kohn–Sham density functional theory (DFT) along with the climbing image nudged elastic band (CI-NEB) method to predict potential H2/CO2 separation ability of bMOF-200. We examine the H2/CO2 separation performance using both column breakthrough and membrane permeation studies. bMOF-200 membranes exhibit a H2/CO2 separation factor of 7.9. The pore space of bMOF-201 is significantly different than bMOF-200, and one molecular diffusion pathway is occluded by coordinating charge-balancing formate and acetate anions. A consequence of this structural difference is reduced permeability to both H2 and CO2 and a significantly improved H2/CO2 separation factor of 22.2 compared to bMOF-200, which makes bMOF-201 membranes competitive with some of the best performing MOF membranes in terms of H2/CO2 separations.

Tailorable multicomponent MOFs and MOF membranes for efficient H2/CO2 separation.  相似文献   
207.
Measuring the metabolome: current analytical technologies   总被引:44,自引:0,他引:44  
Dunn WB  Bailey NJ  Johnson HE 《The Analyst》2005,130(5):606-625
The post-genomics era has brought with it ever increasing demands to observe and characterise variation within biological systems. This variation has been studied at the genomic (gene function), proteomic (protein regulation) and the metabolomic (small molecular weight metabolite) levels. Whilst genomics and proteomics are generally studied using microarrays (genomics) and 2D-gels or mass spectrometry (proteomics), the technique of choice is less obvious in the area of metabolomics. Much work has been published employing mass spectrometry, NMR spectroscopy and vibrational spectroscopic techniques, amongst others, for the study of variations within the metabolome in many animal, plant and microbial systems. This review discusses the advantages and disadvantages of each technique, putting the current status of the field of metabolomics in context, and providing examples of applications for each technique employed.  相似文献   
208.
A method is described for the identification and relative quantification of proteomes using accurate mass tags (AMT) generated by nLC-dual ESI-FT-ICR-MS on a 7T instrument in conjunction with stable isotope labeling using 16O/18O ratios. AMTs were used for putative peptide identification, followed by confirmation of peptide identity by tandem mass spectrometry. For a combined set of 58 tryptic peptides from bovine serum albumin (BSA) and human transferrin, a mean mass measurement accuracy of 1.9 ppm +/-0.94 ppm (CIM99%) was obtained. This subset of tryptic peptides was used to measure 16O/18O ratios of 0.36 +/- 0.09 (CIM99%) for BSA (micro = 0.33) and 1.48 +/- 0.47 (CIM99%) for transferrin (micro = 1.0) using a method for calculating 16O/18O ratios from overlapping isotopic multiplets arising from mixtures of 16O, 18O1, and 18O2 labeled C-termini. The model amino acid averagine was used to calculate a representative molecular formula for estimating and subtracting the contributions of naturally occurring isotopes solely as a function of peptide molecular weight. The method was tested against simulated composite 16O/18O spectra where peptide molecular weight, 16O/18O ratio, 18O1/18O2 ratios, and number of sulfur atoms were varied. Relative errors of 20% or less were incurred when the 16O/18O ratios were less than three, even for peptides where the number of sulfur atoms was over- or under-estimated. These data demonstrate that for biomarker discovery, it is advantageous to label the proteome representing the disease state with 18O; and the method is not sensitive to variations in 18O1/18O2 ratio. This approach allows a comprehensive differentiation of expression levels and tentative identification via AMTs, followed by targeted analysis of over- and under-expressed peptides using tandem mass spectrometry, for applications such as the discovery of disease biomarkers.  相似文献   
209.
A simple, rapid sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method is presented for isolating the alpha, alpha' and beta subunits of rabbit muscle phosphorylase kinase. The SDS-PAGE procedure can yield milligram amounts of alpha and beta from a single preparative gel and also allows isolation of the alpha' isozyme free of alpha. Notably the method provides the purified subunits in a form amenable to structural analysis. Edman degradation of alpha and alpha' reveal identical NH2-terminal structures. Amino acid analysis of the electrophoretically purified alpha and beta subunits are in good agreement with their deduced primary structures. The amino acid sequence of 488 residues in alpha and 713 residues in beta were determined by gas phase Edman degradation. The data support the recently deduced primary structures of alpha (Zander et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 9381-9385).  相似文献   
210.
A copolymeric stationary phase, consisting of a chiral selective part, i.e. (1R-trans)-N,N'-1,2-cyclohexylenebisbenzamide, and an efficient siloxane oligomeric part, was successfully applied to open tubular column GC analysis. The efficiency and the chiral selectivity of this stationary phase were studied in detail, and high capacity and efficiency at elevated GC temperatures were especially noted. Several drugs and other enantiomeric pairs were separated. The shown examples demonstrate a broad application range for this type of chiral stationary phase in GC analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号