首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26220篇
  免费   514篇
  国内免费   160篇
化学   17584篇
晶体学   214篇
力学   655篇
综合类   1篇
数学   4401篇
物理学   4039篇
  2021年   176篇
  2020年   213篇
  2019年   284篇
  2018年   232篇
  2017年   207篇
  2016年   444篇
  2015年   344篇
  2014年   456篇
  2013年   1327篇
  2012年   1191篇
  2011年   1508篇
  2010年   780篇
  2009年   624篇
  2008年   1365篇
  2007年   1419篇
  2006年   1409篇
  2005年   1413篇
  2004年   1243篇
  2003年   1042篇
  2002年   1017篇
  2001年   370篇
  2000年   298篇
  1999年   248篇
  1998年   285篇
  1997年   313篇
  1996年   398篇
  1995年   298篇
  1994年   282篇
  1993年   289篇
  1992年   274篇
  1991年   240篇
  1990年   225篇
  1989年   245篇
  1988年   270篇
  1987年   255篇
  1986年   246篇
  1985年   387篇
  1984年   437篇
  1983年   323篇
  1982年   434篇
  1981年   404篇
  1980年   343篇
  1979年   333篇
  1978年   347篇
  1977年   332篇
  1976年   275篇
  1975年   270篇
  1974年   260篇
  1973年   239篇
  1972年   144篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
Physical strands or sheets that can be modelled as curves or surfaces embedded in three dimensions are ubiquitous in nature, and are of fundamental importance in mathematics, physics, biology, and engineering. Often the physical interpretation dictates that self-avoidance should be enforced in the continuum model, i.e., finite energy configurations should not self-intersect. Current continuum models with self-avoidance frequently employ pairwise repulsive potentials, which are of necessity singular. Moreover the potentials do not have an intrinsic length scale appropriate for modelling the finite thickness of the physical systems. Here we develop a framework for modelling self-avoiding strands and sheets which avoids singularities, and which provides a way to introduce a thickness length scale. In our approach pairwise interaction potentials are replaced by many-body potentials involving three or more points, and the radii of certain associated circles or spheres. Self-interaction energies based on these many-body potentials can be used to describe the statistical mechanics of self-interacting strands and sheets of finite thickness.  相似文献   
12.
This article sets the stage for the following 3 articles. It opens with a brief history of attempts to characterize advanced mathematical thinking, beginning with the deliberations of the Advanced Mathematical Thinking Working Group of the International Group for the Psychology of Mathematics Education. It then locates the articles within 4 recurring themes: (a) the distinction between identifying kinds of thinking that might be regarded as advanced at any grade level, and taking as advanced any thinking about mathematical topics considered advanced; (b) the utility of characterizing such thinking for integrating the entire curriculum; (c) general tests, or criteria, for identifying advanced mathematical thinking; and (d) an emphasis on advancing mathematical practices. Finally, it points out some commonalities and differences among the 3 following articles.  相似文献   
13.
John Pegg  David Tall 《ZDM》2005,37(6):468-475
In this paper, the development of mathematical concepts over time is considered. Particular reference is given to the shifting of attention from step-by-step procedures that are performed in time, to symbolism that can be manipulated as mental entities on paper and in the mind. The development is analysed using different theoretical perspectives, including the SOLO model and various theories of concept construction to reveal a fundamental cycle underlying the building of concepts that features widely in different ways of thinking that occurs throughout mathematical learning.  相似文献   
14.
State-of-the-art spectroscopy of nuclei far from stability has achieved an extraordinary level of sophistication and detail in the last ten years. In principle, if a state can be populated, it can be characterized by its energy, spin, parity, and major decay paths. Sometimes its lifetime can be measured. In practice, one is confronted with enormous complexity. To convert raw spectroscopic data into nuclear structure data involves a complex process of disentangling gamma rays and conversion electrons into decay schemes. Specifically, coincidence techniques, especially coincidence intensities, play a crucial role in this process. Recent examples and methods from work done at UNISOR are presented.  相似文献   
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号