3-Methylenecyclobutanecarboxylic acid and its methyl ester were used as the starting compounds for the synthesis of new spiro[2.3]hexane amino acids, the conformationally rigid analogs of γ-aminobutyric acid, namely, 5-aminospiro[2.3]hexanecarboxylic and 5-amino-spiro[2.3]hexanephosphonic acids, promising modulators of GABAergic cascades in the human central nervous system. The methods developed for the synthesis of the target amino acids are based on the reactions of catalytic [1+2] cycloaddition of diazoacetic and diazophosphonic esters to 3-substituted methylenecyclobutanes, as well as on a modified Curtius reaction for the transformation of a carboxy group to the amine one. 相似文献
The results of theoretical search for model transition states of the electrophilic substitution reaction in 2H-tetrazole (1) without the preliminary formation of N-protonated azolium salts are presented for two routes that were previously suggested by the authors and thermodynamically investigated: A, the attack of molecule 1 by the nucleophile (HO–(aq)) to form the anion to which the electrophile H3O+(aq)) is added and B, the attack of molecule 1 by the same electrophile followed by the addition of the same nucleophile to the specifically solvated protonated species formed in the preceding reaction step. The calculations were performed using the DFT/B3LYP/6-31G(d) method and the scanning procedure of the potential energy surface (PES). Both steps of route A turned out to be nearly barrierless, while in route B only its first step is barrierless and the second one is conjugated with passing an activation barrier of ~45 kcal mol–1 between non-interacting or weakly interacting reactants and electrophilic substitution products. Unlike the specifically solvated protonated species of 1H-tetrazole in an aqueous solution, a similar species of 2H-tetrazole does not form a prereaction complex with the attacking nucleophile (HO–(aq)) and the five-membered ring is destroyed in fact in the nitrogen-containing reaction product formed after passing the activation barrier. The optimized structure of the transition state differs strongly from the nitrogen-containing structure of the reaction product with the destroyed ring, which was found by scanning of the PES. 相似文献
The catalytic hydrogenation of benzodiazepinones using metal complexes with phosphite and phosphoramidite ligands was carried out for the first time. The mixed-ligand catalytic systems containing a chiral phosphoramidite or phosphite in combination with an achiral phosphine were shown to exhibit a higher enantioselectivity compared to catalysts containing homocombinations of chiral ligands. 相似文献
The reduction of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) with an excess of europium metal in 1,2-dimethoxyethane (dme) produces a divalent europium complex with the dpp-bian dianion, [(dpp-bian)Eu(dme)2] (1). The reactions of 1 with phenyl-acetylene and camphor proceed via protonation of the diimine ligand to form the monomeric amido-amino complexes of divalent europium — [H(dpp-bian)Eu(C≡CPh)(dme)2] (2) and [H(dpp-bian)Eu(camphor)(dme)2] (3), respectively. Compounds 2 and 3 were characterized by IR spectroscopy and elemental analysis. Their molecular structures were determined by X-ray diffraction. Compounds 2 and 3 were shown to be monomeric seven-coordinate europium(ii) complexes with terminal phenylethynyl and enol ligands, respectively. According to the IR spectroscopic data, the terminal ligands in complexes 2 and 3 undergo tautomerization involving backward proton transfer from the amido-amino ligand to the substrate. The magnetic moment of compound 2 (8.03 μB) remains constant in the temperature range of 4—300 К and confirms the presence of divalent europium. 相似文献
Russian Chemical Bulletin - A method for radiolabeling the water-soluble N-vinylpyrrolidone copolymers with N-vinyl- and N-allylamine containing bifunctional chelation unit... 相似文献
Carane-derived β-amino alcohols with amino and hydroxy groups at positions 3 and 4 differing in their mutual arrangement and configuration were synthesized. Their application as organocatalysts in the asymmetric aldol reaction of isatin with acetone allowed one to obtain adducts with up to 84% enantiomeric excess. 相似文献
With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient’s pathology based diagnosis of “poorly differentiated SqCC”. Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic.
Untargeted omics analyses aim to comprehensively characterize biomolecules within a biological system. Changes in the presence or quantity of these biomolecules can indicate important biological perturbations, such as those caused by disease. With current technological advancements, the entire genome can now be sequenced; however, in the burgeoning fields of lipidomics, only a subset of lipids can be identified. The recent emergence of high resolution tandem mass spectrometry (HR-MS/MS), in combination with ultra-high performance liquid chromatography, has resulted in an increased coverage of the lipidome. Nevertheless, identifications from MS/MS are generally limited by the number of precursors that can be selected for fragmentation during chromatographic elution. Therefore, we developed the software IE-Omics to automate iterative exclusion (IE), where selected precursors using data-dependent topN analyses are excluded in sequential injections. In each sequential injection, unique precursors are fragmented until HR-MS/MS spectra of all ions above a user-defined intensity threshold are acquired. IE-Omics was applied to lipidomic analyses in Red Cross plasma and substantia nigra tissue. Coverage of the lipidome was drastically improved using IE. When applying IE-Omics to Red Cross plasma and substantia nigra lipid extracts in positive ion mode, 69% and 40% more molecular identifications were obtained, respectively. In addition, applying IE-Omics to a lipidomics workflow increased the coverage of trace species, including odd-chained and short-chained diacylglycerides and oxidized lipid species. By increasing the coverage of the lipidome, applying IE to a lipidomics workflow increases the probability of finding biomarkers and provides additional information for determining etiology of disease.
The efficiency of two-stage probe atomization for the determination of gold and palladium in geological samples by electrothermal atomic absorption spectrometry is studied. The effects of temperature–time program and the position of the probe in an atomizer on the fractionation of sample components and the magnitude of the analytical signal are studied. It is demonstrated that gold and palladium can be quantitatively determined by atomic absorption spectrometry in rocks and ores, using a two-stage probe atomization with the limits of detection for gold and palladium 0.01 and 0.04 g/t, respectively. 相似文献
An electrochemical aptasensor is developed for the highly sensitive determination of cytochrome C, using a change in the redox current of Neutral Red covalently bound to terminal carboxyl groups of decasubstituted pillar[5]arene as a signal. The inclusion of the analyte into the complex with an aptamer reduces peaks of redox current of the dye through the dissociation of electron transfer chain in the surface layer. The aptasensor enables the determination of 1 nM to 1.0 mM of cytochrome C in the presence of 1000-fold excesses of albumin, polyethylene glycol, and lysozyme as models of interfering components in biological fluids. 相似文献