首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57030篇
  免费   6068篇
  国内免费   3423篇
化学   39341篇
晶体学   563篇
力学   2454篇
综合类   137篇
数学   7378篇
物理学   16648篇
  2023年   781篇
  2022年   1334篇
  2021年   1544篇
  2020年   1600篇
  2019年   1653篇
  2018年   1393篇
  2017年   1252篇
  2016年   2028篇
  2015年   1850篇
  2014年   2393篇
  2013年   3702篇
  2012年   4030篇
  2011年   4361篇
  2010年   2645篇
  2009年   2396篇
  2008年   3343篇
  2007年   3142篇
  2006年   3024篇
  2005年   2680篇
  2004年   2209篇
  2003年   1797篇
  2002年   1767篇
  2001年   954篇
  2000年   761篇
  1999年   835篇
  1998年   795篇
  1997年   807篇
  1996年   882篇
  1995年   724篇
  1994年   624篇
  1993年   568篇
  1992年   552篇
  1991年   462篇
  1990年   426篇
  1989年   391篇
  1988年   360篇
  1987年   329篇
  1986年   349篇
  1985年   459篇
  1984年   473篇
  1983年   366篇
  1982年   455篇
  1981年   424篇
  1980年   348篇
  1979年   335篇
  1978年   347篇
  1977年   331篇
  1976年   275篇
  1975年   271篇
  1974年   260篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Reaction of HMo(CO)3C5H5 and Sn(C5H5)2 produces the tin hydride HSn[Mo(CO)3C5H5]3 (I). Reaction of I with CCl4, CHCl3, or CH2Cl2 gives ClSn[Mo(CO)3C5H5]3 (II). With hydrogen chloride the hydride I reacts to produce the dichloride Cl2Sn[Mo(CO)3C5H5]2. The first step in this reaction is cleavage of the SnH bond to produce the chloride II. The hydride I reacts with acetic acid to produce the diacetate (CH3COO)2Sn[Mo(CO)3C5H5]2.  相似文献   
112.
The interaction of organotin halides with lithium salts of mono-substituted phosphorus ylids and also with disubstituted ylids is described.  相似文献   
113.
Designs, Codes and Cryptography - The problem of classifying linear systems of conics in projective planes dates back at least to Jordan, who classified pencils (one-dimensional systems) of conics...  相似文献   
114.
The underlying mechanisms of stability, metastability, or instability of the Cassie-Baxter and Wenzel wetting modes and their transitions on superhydrophobic surfaces decorated with periodic micropillars are quantitatively studied in this article. Hydraulic pressure, which may be generated by the water-air interfacial tension of water droplets or external factors such as raining impact, is shown to be a key to understanding these mechanisms. A detailed transition process driven by increasing hydraulic pressure is numerically simulated. The maximum sustainable or critical pressure of the Cassie-Baxter wetting state on a pillarlike microstructural surface is formulated for the first time in a simple, unified, and precise form. This analytic result reveals the fact that reducing the microstructural scales (e.g., the pillars' diameters and spacing) is probably the most efficient measure needed to enlarge the critical pressure significantly. We also introduce a dimensionless parameter, the pillar slenderness ratio, to characterize the stability of either the Cassie-Baxter or the Wenzel wetting state and show that the energy barrier for transitioning from the Cassie-Baxter to the Wenzel wetting mode is proportional to both the slenderness ratio and the area fraction. Thus, the Cassie-Baxter wetting mode may collapse under a hydraulic pressure lower than the critical one if the slenderness ratio is improperly small. This quantitative study explains fairly well some experimental observations of contact angles that can be modeled by neither Wenzel nor Cassie-Baxter contact angles and eventually leads to our proposals for a mixed (or coexisting) wetting mode.  相似文献   
115.
116.
The purpose of this article is to illustrate the utility of the Weierstrass transform in the study of functional equations (and systems) of the form 1 $${\mathop \sum^N\limits_{k=0}}\alpha_{k}f(x+r_{k})=f_{0}(x)\ \ \ \, x\in\ {\rm R}.$$ One may think of α0, α1,…, αN as given complex numbers, r0, r1,…, rN as given real numbers, ?0: ? → C as a given function and ? as the unknown.  相似文献   
117.
I will present the first results from the E864 collaboration on the production of negative kaons and antiprotons in 10% central 11.5 A GeV/c Au+Pb nucleus collisions at the Brookhaven AGS. E864 is a high rate, open geometry spectrometer, capable of measuring particle production in a range of rapidities and transverse momenta at a single setting of the spectrometer magnets. The results are derived from the analysis of over 20 million central interactions collected in the Fall 1994 run. I will report onK ? production in a rapidity range from 1.9<y<2.2 (y cm=1.6) and 25<pT<150 MeV/c, and $\bar p$ production from 1.2<y<2.2 and 50<pT<400 MeV/c. A comparison with previously published results from E878 is presented and the implications for $\bar \Lambda $ production are discussed.  相似文献   
118.
119.
The commercially available nonionic superbase P(MeNCH(2)CH(2))(3)N (1a) is very useful for the acylation of unreactive hindered alcohols as well as acid-sensitive alcohols. The reactions proceed in high yields using an acid anhydride, and 1a can be regenerated in a single step. The relative rates for benzoylation of (+/-)-menthol in C(6)D(6) using conventional acylation reagents and strong nonionic bases are compared. In general, acetylation with 1a is accelerated in the polar solvent CH(3)CN whereas benzoylation is faster in the nonpolar solvent C(6)H(6). The benzoylation intermediate RC(O)P(MeNCH(2)CH(2))(3)N(+) was found to be in equilibrium with 1a, with lower temperatures favoring the intermediate. The relative stabilities of several known acylating intermediates are compared.  相似文献   
120.
We have observed a large nonresonant third-order nonlinear susceptibility, X (3) (-; , 0, 0) in the isotropic phase of a nematic liquid crystal 4-n-hexyl-4-cyanobiphenyl (K18). The highest value of X (3) obtained at 632.8 nm is 1.16274×10-18 m2V-2 corresponding to a temperature 29.3°C. The observed second-order pretransitional temperature T * from our measurements is 1.2°C below the first-order nematic to isotropic transition temperature. The dependence of the Kerr constant on (T-T *)-1 is found to be in good agreement with the predictions of the Landau-de Gennes model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号