首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1144篇
  免费   15篇
  国内免费   2篇
化学   589篇
晶体学   2篇
力学   43篇
数学   102篇
物理学   425篇
  2021年   10篇
  2020年   9篇
  2019年   11篇
  2017年   6篇
  2016年   12篇
  2015年   15篇
  2014年   21篇
  2013年   86篇
  2012年   35篇
  2011年   60篇
  2010年   34篇
  2009年   21篇
  2008年   53篇
  2007年   49篇
  2006年   45篇
  2005年   46篇
  2004年   52篇
  2003年   35篇
  2002年   32篇
  2001年   26篇
  2000年   36篇
  1999年   19篇
  1998年   8篇
  1997年   6篇
  1996年   21篇
  1995年   17篇
  1994年   24篇
  1993年   33篇
  1992年   21篇
  1991年   19篇
  1990年   8篇
  1989年   12篇
  1988年   14篇
  1987年   15篇
  1986年   18篇
  1985年   15篇
  1984年   12篇
  1983年   12篇
  1982年   9篇
  1981年   12篇
  1980年   16篇
  1979年   15篇
  1978年   9篇
  1977年   12篇
  1976年   14篇
  1975年   8篇
  1974年   12篇
  1973年   17篇
  1972年   9篇
  1968年   9篇
排序方式: 共有1161条查询结果,搜索用时 15 毫秒
901.
The adsorption of cationic starch (CS) from aqueous electrolyte solutions onto model cellulose film has been investigated by the quartz crystal microbalance with dissipation monitoring (QCM-D) and X-ray photoelectron spectroscopy (XPS). The influence of the electrolyte composition and charge density of CS was examined. The adsorption of CS onto cellulose followed the general trends expected for polyelectrolyte adsorption on oppositely charged surfaces, with some exceptions. Thus, as result of the very low surface charge density of the cellulose surface, highly charged CS did not adsorb in a flat conformation even at low ionic strength. The porosity of the film, however, enabled the penetration of coiled CS molecules into the film at high electrolyte concentrations. Differences between the adsorption behavior of CS on cellulose and earlier observations of the adsorption of the same starches on silica could be explained by the different morphologies and acidities of the hydroxyl groups on the two surfaces.  相似文献   
902.
Mesostructured silica thin films and particles provide highly versatile supports or frameworks for functional materials where a desired function (such as energy transfer, electron transfer, or molecular machines) is induced by molecules deliberately placed in specific regions of the structure. The relatively gentle templated sol–gel synthesis methods allow a wide variety of molecules to be used, and the optical transparency of the framework is very suitable for studies of light-induced functionality. In this paper, three types of functionality are used to obtain fundamental understanding of the materials themselves and to develop active materials that can trap and release molecules from the pores upon command. Photo-induced energy transfer is used to verify that molecules can be placed in specific spatially separated regions of the framework; fluorescence resonance energy transfer is used as a molecular ruler to measure quantitatively the distance between pairs of molecules. Secondly, photo-induced electron transfer is used to obtain fundamental information about the electrical insulating properties of the framework. Finally, two types of molecular machines, a light-driven impeller and a light activated nanovalve, are described. Both machines contain moving parts attached to solid supports and do useful work. The valves trap and release molecules from the mesopores, and the impellers expel molecules from the pores. Applications of the materials to drug delivery and the release of drug molecules inside living cells is described.  相似文献   
903.
The functionalization of C−H bonds, ubiquitous in drugs and drug-like molecules, represents an important synthetic strategy with the potential to streamline the drug-discovery process. Late-stage aromatic C−N bond–forming reactions are highly desirable, but despite their significance, accessing aminated analogues through direct and selective amination of C−H bonds remains a challenging goal. The method presented herein enables the amination of a wide array of benzoic acids with high selectivity. The robustness of the system is manifested by the large number of functional groups tolerated, which allowed the amination of a diverse array of marketed drugs and drug-like molecules. Furthermore, the introduction of a synthetic handle enabled expeditious access to targeted drug-delivery conjugates, PROTACs, and probes for chemical biology. This rapid access to valuable analogues, combined with operational simplicity and applicability to high-throughput experimentation has the potential to aid and considerably accelerate drug discovery.  相似文献   
904.
A core level and valence band photoemission study of thick 3C–SiC(1 1 1) and 3C–SiC( ) epilayers grown by sublimation epitaxy is reported. The as introduced samples show threefold 1×1 low-energy electron diffraction patterns. For the Si face and reconstructed surfaces develop after in situ heating to 1100°C and 1300°C, respectively. For the C face a 3×3 reconstruction form after heating to 980°C. A semiconducting behavior is observed for the and 3×3 reconstructed surfaces while the reconstruction show a Fermi edge and thus a metallic-like behavior. The surface state on the surface is investigated and found to have Λ1 symmetry and a total band width of 0.10 eV within the first surface Brillouin zone. For the Si 2p and C 1s core levels binding energies and surface shifted components are extracted and compared to earlier reported results for 6H– and 4H–SiC.  相似文献   
905.
This contribution deals with the physical-chemical properties of surfactants carrying hydroxyl groups in the polar part. Topics discussed include surface and colloid properties, micelles (both single and multi-component), general phase behaviour and microemulsions. A general conclusion is that our understanding of polyhydroxy surfactants is increasing, but that further work is needed to unravel certain aspects of this important class of surfactants. Examples of such aspects are the origin of the liquid-liquid phase separation and the adsorption to solid surfaces of polyhydroxy surfactants.  相似文献   
906.
In this paper, multivariate calibration of complicated process fluorescence data is presented. Two data sets related to the production of white sugar are investigated. The first data set comprises 106 observations and 571 spectral variables, and the second data set 268 observations and 3997 spectral variables. In both applications, a single response, ash content, is modelled and predicted as a function of the spectral variables. Both data sets contain certain features making multivariate calibration efforts non-trivial. The objective is to show how principal component analysis (PCA) and partial least squares (PLS) regression can be used to overview the data sets and to establish predictively sound regression models. It is shown how a recently developed technique for signal filtering, orthogonal signal correction (OSC), can be applied in multivariate calibration to enhance predictive power. In addition, signal compression is tested on the larger data set using wavelet analysis. It is demonstrated that a compression down to 4% of the original matrix size — in the variable direction — is possible without loss of predictive power. It is concluded that the combination of OSC for pre-processing and wavelet analysis for compression of spectral data is promising for future use.  相似文献   
907.
A series of non-ionic alcohol ethoxylated surfactants (with HLB within the range of 11.1–12.5) were used as dispersants during flotation of mondisperse hydrophobised silica particles (representing ink particles) in de-inking formulations. Laboratory scale flotation experiments, contact angle, dynamic surface tension and thin film drainage experiments were carried out. The reduction in dynamic surface tension at the air/solution interface (which is dependent on the adsorption kinetics) followed the order C10E6>C12E8≈C12E6>C14E6 and these values were lower than sodium oleate, which is commonly used in de-inking systems. In addition the non-ionics adsorbed on the hydrophobised silica particles reducing the contact angle. These results indicated that the non-ionic surfactant with the highest CMC (C10E6) gave (a) the highest rate of adsorption at the air/solution interface (b) the froth with the greatest water content and higher froth volume (c) the lowest reduction in contact angle and (d) the highest flotation efficiency at concentrations above the CMC. It was also observed that flotation occurred, in spite of the fact that thin-film measurements indicated that the adsorption of non-ionic at the air/solution and silica/solution interfaces reduced the hydrophobicity of the particles, as indicated by an increase in stability of the aqueous thin film between the particle and air-bubble. This result suggests that the bubble-ink particle captures mechanism (occurring through rupture of the thin aqueous film separating the interfaces) is not the only mechanism controlling the flotation efficiency and that other parameters (such as the kinetics of surfactant adsorption, foaming characteristics, and bubble size) need to be taken into account. The kinetics is important with respect to the rate of adsorption of surfactant to both interfaces. Under equilibrium conditions, this may give rise to repulsive steric forces between the air-bubble and the particles (stable aqueous thin-films). However, a lower amount of surfactant adsorbed at a freshly formed air bubble or inkparticle (caused by slow adsorption rates) will produce a lower steric repulsive force allowing effective collection of particles by the bubble. Also, it was suggested that the influence of alcohol ethoxylates on bubble-size could effect the particle capture rate and mechanical entrainment of particles in an excessively buoyant froth, which will also play an important role in the flotation recovery.  相似文献   
908.
909.
We present an approach for analysing the dc current in voltage biased quantum superconducting junctions. By separating terms from different n -particle processes, we find that the n -particle current can be mapped on the problem of wave transport through a potential structure with n barriers. We discuss the relation between resonances in such structures and the subgap structures in the current–voltage characteristics. At zero temperature we find, exactly, that only processes creating real excitations contribute to the current. Our results are valid for a general SXS junction, where the X region is an arbitrary nonsuperconducting region described by an energy-dependent transfer matrix.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号