首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   29篇
  国内免费   1篇
化学   502篇
晶体学   1篇
力学   8篇
数学   43篇
物理学   104篇
  2023年   11篇
  2022年   7篇
  2021年   15篇
  2020年   22篇
  2019年   13篇
  2018年   7篇
  2017年   9篇
  2016年   28篇
  2015年   26篇
  2014年   27篇
  2013年   35篇
  2012年   33篇
  2011年   31篇
  2010年   27篇
  2009年   18篇
  2008年   32篇
  2007年   35篇
  2006年   30篇
  2005年   27篇
  2004年   18篇
  2003年   12篇
  2002年   13篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1982年   4篇
  1978年   8篇
  1971年   2篇
  1965年   2篇
  1961年   3篇
  1960年   70篇
  1939年   1篇
  1933年   1篇
  1930年   2篇
  1928年   1篇
  1923年   2篇
  1920年   1篇
  1909年   1篇
排序方式: 共有658条查询结果,搜索用时 15 毫秒
651.
A catalyst type is disclosed allowing for exceptional efficiency in direct 1,4-additions. The catalyst is a zwitterionic entity, in which acetate binds to CuII, which is formally negatively charged and serving as counterion for benzimidazolium. All 3 functionalities are involved in the catalytic activation. For maleimides productivity was increased by a factor >300 compared to literature (TONs up to 6700). High stereoselectivity and productivity was attained for a broad range of other Michael acceptors as well. The polyfunctional catalyst is accessible in only 4 steps from N-Ph-benzimidazole with an overall yield of 96 % and robust during catalysis. This allowed to reuse the same catalyst multiple times with nearly constant efficiency. Mechanistic studies, in particular by DFT, give a detailed picture how the catalyst operates. The benzimidazolium unit stabilizes the coordinated enolate nucleophile and prevents that acetate/acetic acid dissociate from the catalyst.  相似文献   
652.
The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2O to D2O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.  相似文献   
653.
Enhancing NMR signals of biomacromolecules by hyperpolarization offers exciting opportunities for diagnostic applications. However, their hyperpolarization via parahydrogen remains challenging as specific catalytic interactions are required, which are difficult to tune due to the large size of the biomolecule and its insolubility in organic solvents. Herein, we show the unprecedented hyperpolarization of the cancer-targeting DNA aptamer AS1411. By screening different molecular motifs for an unsaturated label in nucleosides and in DNA oligomers, we were able to identify structural prerequisites for the hyperpolarization of AS1411. Finally, adjusting the polarity of AS1411 by complexing the DNA backbone with amino polyethylene glycol chains allowed the hydrogenation of the label with parahydrogen while the DNA structure remains stable to maintain its biological function. Our results are expected to advance hyperpolarized molecular imaging technology for disease detection in the future.  相似文献   
654.
Ground rubber powder (GRP) with three different sizes was incorporated into nature rubber matrix with different loading. Cure characteristics, swelling behaviour, crosslink density, tensile fractured surface, and mechanical properties have been studied. Based on the cure characteristics, it is evident that the processability of the rubber compounds has not changed obviously with the different GRP loading. The introduction of GRP in virgin rubber leads to the increase in swelling degree and the decrease in crosslink density. Tensile strength, hardness and abrasion resistant deteriorate with the increase of GRP loading, but the tear resistance gets better. If the ground rubber particles are smaller, the properties are more similar to the virgin rubber. Because of the phase separation of the GRP and matrix, the properties get worse with the bigger ground rubber powder.  相似文献   
655.
A type of protein/peptide pair known as Catcher/Tag pair spontaneously forms an intermolecular isopeptide bond which can be applied for biomolecular click reactions. Covalent protein conjugation using Catcher/Tag pairs has turned out to be a valuable tool in biotechnology and biomedicines, but it is essential to increase the current toolbox of orthogonal Catcher/Tag pairs to expand the range of applications further, for example, for controlled multiple-fragment ligation. We report here the engineering of novel Catcher/Tag pairs for protein ligation, aided by a crystal structure of a minimal CnaB domain from Lactobacillus plantarum. We show that a newly engineered pair, called SilkCatcher/Tag enables efficient pH-inducible protein ligation in addition to being compatible with the widely used SpyCatcher/Tag pair. Finally, we demonstrate the use of the SilkCatcher/Tag pair in the production of native-sized highly repetitive spider-silk-like proteins with >90 % purity, which is not possible by traditional recombinant production methods.  相似文献   
656.
Defects fundamentally govern the properties of all real materials. Correlating molecular defects to macroscopic quantities remains a challenge, particularly in the liquid phase. Herein, we report the influence of hydrogen bonds (HB) acting as defects in mixtures of non-hydroxyl-functionalized ionic liquids (ILs) with an increasing concentration of hydroxyl-functionalized ILs. We observed two types of HB defects: The conventional HBs between cation and anion (c–a), and the elusive HBs between cations (c–c) despite the repulsive Coulomb forces. We use neutron diffraction with isotopic substitution in combination with molecular dynamics simulations for measuring the geometry, strength, and distribution of mobile OH defects in the IL mixtures. In principle, this procedure allows relating the number and stability of defects to macroscopic properties such as diffusion, viscosity, and conductivity, which are of utmost importance for the performance of electrolytes in batteries and other electrical devices.  相似文献   
657.
The 3d-metal catalyst Mn(CO)5Br was found to efficiently promote ortho C−H allylations of arenecarboxylates in the presence of neocuproine as the ligand. Despite the simplicity of directing group and catalyst system, the selectivity goes well beyond the state-of-the-art in that mono-allylated products are obtained exclusively with high selectivities for the least hindered ortho-position. The directing group can optionally be removed by in situ decarboxylation, opening up a regioselective entry to allyl arenes. The preparative utility of the process and its othogonality to other approaches was demonstrated by 44 products with otherwise hard-to-access substitution patterns, including 3-bromo-allylbenzene, 3-allylbenzofuran, or 5-allyl-2-methylnitrobenzene.  相似文献   
658.
The role of β-CoOOH crystallographic orientations in catalytic activity for the oxygen evolution reaction (OER) remains elusive. We combine correlative electron backscatter diffraction/scanning electrochemical cell microscopy with X-ray photoelectron spectroscopy, transmission electron microscopy, and atom probe tomography to establish the structure–activity relationships of various faceted β-CoOOH formed on a Co microelectrode under OER conditions. We reveal that ≈6 nm β-CoOOH(01 0), grown on [ 0]-oriented Co, exhibits higher OER activity than ≈3 nm β-CoOOH(10 3) or ≈6 nm β-CoOOH(0006) formed on [02 - and [0001]-oriented Co, respectively. This arises from higher amounts of incorporated hydroxyl ions and more easily reducible CoIII−O sites present in β-CoOOH(01 0) than those in the latter two oxyhydroxide facets. Our correlative multimodal approach shows great promise in linking local activity with atomic-scale details of structure, thickness and composition of active species, which opens opportunities to design pre-catalysts with preferred defects that promote the formation of the most active OER species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号