首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1378篇
  免费   46篇
  国内免费   5篇
化学   895篇
晶体学   8篇
力学   17篇
数学   199篇
物理学   310篇
  2023年   9篇
  2022年   13篇
  2021年   30篇
  2020年   28篇
  2019年   23篇
  2018年   10篇
  2017年   14篇
  2016年   46篇
  2015年   30篇
  2014年   41篇
  2013年   61篇
  2012年   68篇
  2011年   92篇
  2010年   49篇
  2009年   47篇
  2008年   62篇
  2007年   82篇
  2006年   88篇
  2005年   52篇
  2004年   62篇
  2003年   30篇
  2002年   26篇
  2001年   23篇
  2000年   14篇
  1999年   20篇
  1998年   24篇
  1997年   13篇
  1996年   20篇
  1995年   17篇
  1994年   16篇
  1993年   16篇
  1992年   13篇
  1991年   10篇
  1990年   9篇
  1989年   17篇
  1988年   20篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   23篇
  1983年   11篇
  1982年   18篇
  1981年   12篇
  1980年   18篇
  1979年   9篇
  1978年   15篇
  1977年   11篇
  1975年   9篇
  1974年   12篇
  1972年   9篇
排序方式: 共有1429条查询结果,搜索用时 15 毫秒
91.
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light‐management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre‐patterned polydimethylsiloxane (PDMS) templates are used for the template‐induced self‐assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near‐IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi‐photon absorption caused by light trapping in the photonic crystal.  相似文献   
92.
93.
We describe the simple, scalable, single‐step, and polar‐solvent‐free synthesis of high‐quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.  相似文献   
94.
Organocatalysis has revolutionized asymmetric synthesis. However, the supramolecular interactions of organocatalysts in solution are often neglected, although the formation of catalyst aggregates can have a strong impact on the catalytic reaction. For phosphoric acid based organocatalysts, we have now established that catalyst–catalyst interactions can be suppressed by using macrocyclic catalysts, which react predominantly in a monomeric fashion, while they can be favored by integration into a bifunctional catenane, which reacts mainly as phosphoric acid dimers. For acyclic phosphoric acids, we found a strongly concentration dependent behavior, involving both monomeric and dimeric catalytic pathways. Based on a detailed experimental analysis, DFT-calculations and direct NMR-based observation of the catalyst aggregates, we could demonstrate that intermolecular acid–acid interactions have a drastic influence on the reaction rate and stereoselectivity of asymmetric transfer-hydrogenation catalyzed by chiral phosphoric acids.

Supramolecular acid–acid interactions lead to competing monomeric and dimeric pathways in phosphoric acid catalysis – so that stereoselectivities depend on catalyst concentration.  相似文献   
95.
A coumarin based probe for the efficient detection of hydrogen sulfide in aqueous medium is reported. The investigated coumarine-based derivative forms spherical nanoparticles in aqueous media. In presence of Pd2+, a metallosupramolecular coordination polymer is formed, which is accompanied by quenching of the coumarin emission at 390 nm. Its Pd2+ complex could be used as a probe for chemoselective detection of monohydrogensulfide (HS). Presence of HS leads to a'turn-on' fluorescence signal, resulting from decomplexation of Pd2+ from the metallosupramolecular probe. The probe was successfully applied for qualitative and quantitative detection of HS in different sources of water directly collected from sea, river, tap and laboratory drain water, as well as in growth media for aquatic species.  相似文献   
96.
The structure and dynamics of the adsorbate CO(2)/KCl(100) from a diluted phase to a saturated monolayer have been investigated with He atom scattering (HAS), low-energy electron diffraction (LEED), and polarization dependent infrared spectroscopy (PIRS). Two adsorbate phases with different CO(2) coverage have been found. The low-coverage phase is disordered at temperatures near 80 K and becomes at least partially ordered at lower temperatures, characterized by a (2√2×√2)R45° diffraction pattern. The saturated 2D phase has a high long-range order and exhibits (6√2×√2)R45° symmetry. Its isosteric heat of adsorption is 26 ± 4 kJ mol(-1). According to PIRS, the molecules are oriented nearly parallel to the surface, the average tilt angle in the saturated monolayer phase is 10° with respect to the surface plane. For both phases, structure models are proposed by means of potential calculations. For the saturated monolayer phase, a striped herringbone structure with 12 inequivalent molecules is deduced. The simulation of infrared spectra based on the proposed structures and the vibrational exciton approach gives reasonable agreement between experimental and simulated infrared spectra.  相似文献   
97.
The need for new isotope reference materials   总被引:1,自引:0,他引:1  
Isotope reference materials are needed to calibrate and validate analytical procedures used for the determination of isotope amount ratios, procedurally defined isotope ratios or so-called δ values. In contrast to the huge analytical progress in isotope ratio analytics, the production of isotope reference materials has not kept pace with the increasing needs of isotope analysts. Three representative isotope systems are used to explain the technical and non-technical difficulties and drawbacks, on one hand, and to demonstrate what can be achieved at its best, on the other hand. A clear statement is given that new isotope reference materials are needed to obtain traceable and thus comparable data, which is essential for all kinds of isotope research. The range of available isotope reference materials and δ reference materials should be increased and matrix reference materials certified for isotope compositions or δ values, which do not exist yet, should be provided.  相似文献   
98.
One-bond Pt-Pt nuclear spin-spin coupling constants J(Pt-Pt) for closely related dinuclear Pt complexes can differ by an order of magnitude without any obvious correlation with Pt-Pt distances. As representative examples, the spin-spin couplings of the dinuclear Pt(I) complexes [Pt(2)(CO)(6)](2+) (1) and [Pt(2)(CO)(2)Cl(4)](2-) (2) have been computationally studied with a recently developed relativistic density functional method. The experimental values are (1)J((195)Pt-(195)Pt) = 5250 Hz for 2 but 551 Hz for 1. Many other examples are known in the literature. The experimental trends are well reproduced by the computations and can be explained based on the nature of the ligands that are coordinated to the Pt-Pt fragment. The difference for J(Pt-Pt) of an order of magnitude is caused by a sensitive interplay between the influence of different ligands on the Pt-Pt bond, and relativistic effects on metal-metal and metal-ligand bonds as well as on "atomic orbital contributions" to the nuclear spin-spin coupling constants. The results can be intuitively rationalized with the help of a simple qualitative molecular orbital diagram.  相似文献   
99.
In this paper, we investigate the rotationally resolved spectra of hot CF radicals generated after IR multiphoton dissociation (IRMPD) of CFCl3 or CF2Cl2 and subsequent UV photodissociation. It is shown that these conditions are advantageous for the spectroscopy of transitions involving high rotational quantum numbers and hot bands. Thus molecular constants of CF for the first vibrationally excited state of the electronic ground state (Av=77.1 cm−1, Bv=1.389 cm−1, Dv=6.570×10−6 cm−1) are determined for the first time or are calculated more accurately. The spectroscopic method used was resonance-enhanced multiphoton ionization (REMPI) spectroscopy.  相似文献   
100.
Quantum chemical DFT calculations at the B3LYP/6-31G(d) level have been used to study the stereochemical course of the photochemical cycloaddition of enone 9 with dienes. The observed products of this photochemically induced cycloaddition showed a stereoselectivity, which is opposite to what would be expected by FMO considerations. The quantum chemical calculations revealed that the unusual stereoselectivity of the reaction can be rationalized by assuming a stereospecific photochemical cis-trans isomerization of enone 9 to trans isomer 9a followed by a thermal Diels-Alder reaction of the diene onto the highly reactive trans enone. The photochemical reaction step involves the selective formation of a twisted triplet intermediate, which accounts for the selectivity of the reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号