首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1542篇
  免费   51篇
  国内免费   5篇
化学   1308篇
晶体学   5篇
力学   13篇
数学   108篇
物理学   164篇
  2024年   3篇
  2023年   4篇
  2022年   85篇
  2021年   97篇
  2020年   37篇
  2019年   39篇
  2018年   33篇
  2017年   35篇
  2016年   65篇
  2015年   50篇
  2014年   58篇
  2013年   106篇
  2012年   120篇
  2011年   131篇
  2010年   68篇
  2009年   69篇
  2008年   96篇
  2007年   98篇
  2006年   64篇
  2005年   86篇
  2004年   61篇
  2003年   37篇
  2002年   42篇
  2001年   6篇
  2000年   11篇
  1999年   9篇
  1998年   7篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1987年   5篇
  1986年   5篇
  1984年   5篇
  1981年   3篇
  1979年   3篇
  1975年   3篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1967年   2篇
  1964年   1篇
  1963年   1篇
  1962年   2篇
排序方式: 共有1598条查询结果,搜索用时 15 毫秒
161.
The photochemical stability of poly(vinyl pyrrolidone) (PVP) in the presence of 1%, 3% and 5% of collagen has been studied by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TG) and derivative thermogravimetry (DTG). Surface properties have been studied by contact angle measurements. PVP samples and samples containing 1%, 3% and 5% of collagen were irradiated with UV light of wavelength λ = 254 nm in air for up to 24 h. The amount of gel created during UV irradiation was estimated.PVP in the presence of 1%, 3% and 5% of collagen is less stable both thermally and photochemically. Collagen enhances photochemical processes leading to crosslinking of PVP. The contact angle measurements and values of surface free energy showed that the wettability of PVP films was changed by the addition of collagen and by UV irradiation. The increase of polarity of samples indicates an efficient photooxidation on the surface upon UV irradiation.  相似文献   
162.
This study is aimed to observe changes in fatty acid profiles by time of flight secondary ion mass spectrometry (ToF‐SIMS) in breast muscle tissues of broilers. Four different groups were identified. The source of fat in group I was soy oil (rich in linoleic acid, ω‐6), group II received linseed oil (ω‐3), and the third group was fed a mixture of the two mentioned oils. Broilers in the control group were fed with beef tallow, used in mass commercial production. The results reveal that the use of vegetable oils in animal nutrition determines the lipid profile of fatty acids. ToF‐SIMS measurements showed that the lipid profile of muscle fibers and intramuscular fat reflect the composition of fats used as feed additives. In both structures, the ratio of ω‐6/ω‐3 fatty acids, which is most favorable for human health, was found in the groups in which a mixture of vegetable oils and a supplement of linseed oil were used.  相似文献   
163.
164.
Amphiphilic diblock copolymers consisting of a hydrophobic core containing a polymerized ionic liquid and an outer shell composed of poly(N‐isoprolylacrylamide) were investigated by capillary electrophoresis and asymmetrical flow‐field flow fractionation. The polymerized ionic liquid comprised poly(2‐(1‐butylimidazolium‐3‐yl)ethyl methacrylate tetrafluoroborate) with a constant block length (n = 24), while the length of the poly(N‐isoprolylacrylamide) block varied (n = 14; 26; 59; 88). Possible adsorption of the block copolymer on the fused silica capillary, due to alterations in the polymeric conformation upon a change in the temperature (25 and 45 °C), was initially studied. For comparison, the effect of temperature on the copolymer conformation/hydrodynamic size was determined with the aid of asymmetrical flow‐field flow fractionation and light scattering. To get more information about the hydrophilic/hydrophobic properties of the synthesized block copolymers, they were used as a pseudostationary phase in electrokinetic chromatography for the separation of some model compounds, that is, benzoates and steroids. Of particular interest was to find out whether a change in the length or concentration of the poly(N‐isoprolylacrylamide) block would affect the separation of the model compounds. Overall, our results show that capillary electrophoresis and asymmetrical flow‐field flow fractionation are suitable methods for characterizing conformational changes of such diblock copolymers.  相似文献   
165.
Recently, fluorenylmethoxycarbonyl (Fmoc) amino acids (e.g. Fmoc–tyrosine or Fmoc–phenylalanine) have attracted growing interest in biomedical research and industry, with special emphasis directed towards the design and development of novel effective hydrogelators, biomaterials or therapeutics. With this in mind, a systematic knowledge of the structural and supramolecular features in recognition of those properties is essential. This work is the first comprehensive summary of noncovalent interactions combined with a library of supramolecular synthon patterns in all crystal structures of amino acids with the Fmoc moiety reported so far. Moreover, a new Fmoc‐protected amino acid, namely, 2‐{[(9H‐fluoren‐9‐ylmethoxy)carbonyl](methyl)amino}‐3‐{4‐[(2‐hydroxypropan‐2‐yl)oxy]phenyl}propanoic acid or N‐fluorenylmethoxycarbonyl‐O‐tert‐butyl‐N‐methyltyrosine, Fmoc‐N‐Me‐Tyr(t‐Bu)‐OH, C29H31NO5, was successfully synthesized and the structure of its unsolvated form was determined by single‐crystal X‐ray diffraction. The structural, conformational and energy landscape was investigated in detail by combined experimental and in silico approaches, and further compared to N‐Fmoc‐phenylalanine [Draper et al. (2015). CrystEngComm, 42 , 8047–8057]. Geometries were optimized by the density functional theory (DFT) method either in vacuo or in solutio. The polarizable conductor calculation model was exploited for the evaluation of the hydration effect. Hirshfeld surface analysis revealed that H…H, C…H/H…C and O…H/H…O interactions constitute the major contributions to the total Hirshfeld surface area in all the investigated systems. The molecular electrostatic potentials mapped over the surfaces identified the electrostatic complementarities in the crystal packing. The prediction of weak hydrogen‐bonded patterns via Full Interaction Maps was computed. Supramolecular motifs formed via C—H…O, C—H…π, (fluorenyl)C—H…Cl(I), C—Br…π(fluorenyl) and C—I…π(fluorenyl) interactions are observed. Basic synthons, in combination with the Long‐Range Synthon Aufbau Modules, further supported by energy‐framework calculations, are discussed. Furthermore, the relevance of Fmoc‐based supramolecular hydrogen‐bonding patterns in biocomplexes are emphasized, for the first time.  相似文献   
166.
Most methods developed to study protein binding to distinct surfaces can only determine the average amount of adsorbed protein or merely provide (qualitative) information on its spatial distribution. Both these features can be characterized rigorously by integral geometry analysis of fluorescence micrographs. This approach is introduced here to compare the relative protein adsorption onto various polymer surfaces: polystyrene (PS), poly(methyl methacrylate) (PMMA), poly( n-butyl methacrylate) (PnBMA), poly( tert-butyl methacrylate) (PtBMA), and PS(PETA) and cross-linked poly(ethylene oxide) (PEO*(PETA)), admixed with pentaerythritol triacrylate (PETA). The polymeric surfaces were incubated for 15 min in phosphate-buffered saline (pH 7.4) containing 125 mug/mL fluorescently labeled lectins, either lentil lectin (LcH) or concanavalin A (ConA). Fluorescence images were recorded at identical conditions (physiological buffer, same exposure time, magnification, gain). For each image, taken a few times for each polymer, the distribution and average value of the normalized intensity were determined. The results show that the binding of LcH to PS(PETA), PtBMA, PS, PnBMA, PMMA, and PEO*(PETA) can be expressed by the ratio of the following values (mean +/- 95% confidence interval): 0.356 +/- 0.022, 0.298 +/- 0.030, 0.241 +/- 0.014, 0.083 +/- 0.008, 0.039 +/- 0.008, and 0.010 +/- 0.006, respectively. In turn, the relative adsorption of ConA is described by the values 0.252 +/- 0.016, 0.217 +/- 0.014, 0.222 +/- 0.016, 0.046 +/- 0.006, 0.116 +/- 0.008, and 0.006 +/- 0.002, respectively. Low dispersions of fluorescence intensity around average values indicate homogeneous distribution of adsorbed proteins. The introduced approach enables a fast and easy way not only to quantify the relative amount of bound proteins but also to characterize quantitatively the organization of their surface distribution, as demonstrated for patchlike protein adsorption onto the polymer blend surface.  相似文献   
167.
Antimicrobial polynorbornenes composed of facially amphiphilic monomers have been previously reported to accurately emulate the antimicrobial activity of natural host-defense peptides (HDPs). The lethal mechanism of most HDPs involves binding to the membrane surface of bacteria leading to compromised phospholipid bilayers. In this paper, the interactions between biomimetic vesicle membranes and these cationic antimicrobial polynorbornenes are reported. Vesicle dye-leakage experiments were consistent with previous biological assays and corroborated a mode of action involving membrane disruption. Dynamic light scattering (DLS) showed that these antimicrobial polymers cause extensive aggregation of vesicles without complete bilayer disintegration as observed with surfactants that efficiently solubilize the membrane. Fluorescence microscopy on vesicles and bacterial cells also showed polymer-induced aggregation of both synthetic vesicles and bacterial cells. Isothermal titration calorimetry (ITC) afforded free energy of binding values (Delta G) and polymer to lipid binding ratios, plus revealed that the interaction is entropically favorable (Delta S>0, Delta H>0). It was observed that the strength of vesicle binding was similar between the active polymers while the binding stoichiometries were dramatically different.  相似文献   
168.
We report a technique for continuous production of microparticles of variable size with new forms of anisotropy including alternating bond angles, configurable patchiness, and uniform roughness. The sequence and shape of the anisotropic particles are configured by exploiting a combination of confinement effects and microfluidics to pack precursor colloids with different properties into a narrow, terminal channel. The width and length of the channel relative to the particle size fully specify the configuration of the anisotropic particle that will be produced. The precursor spheres packed in the production zone are then permanently bonded into particles by thermal fusing. The flow in the production zone is reversed to release the particles for collection and use. Particles produced have linear chain structure with precisely configured, repeatable bond angles. With software programmable microfluidics, sequence and shape anisotropy are combined to yield synthesized homogeneous (type "A"), surfactantlike (type "A-B") or triblock (type "A-B-A") internal sequences in a single device. By controlling the dimensions of the microfluidic production zone, triangular prisms and particles with controlled roughness and patchiness are produced. The fabrication method is performed with precursors spheres with diameter as small as 3.0 microm.  相似文献   
169.
Several approaches for utilizing dipolar recoupling solid-state NMR (ssNMR) techniques to determine local structure at high resolution in peptides and proteins have been developed. However, many of these techniques measure only one torsion angle or are accurate for only certain classes of secondary structure. Additionally, the efficiency with which these dipolar recoupling experiments suppress the deleterious effects of chemical shift anisotropy (CSA) at high magnetic field strengths varies. Dipolar recoupling with a windowless sequence (DRAWS) has proven to be an effective pulse sequence for exciting double-quantum (DQ) coherences between adjacent carbonyl carbons along the peptide backbone. By allowing this DQ coherence to evolve, it is possible to measure the relative orientations of the CSA tensors and subsequently use this information to determine the Ramachandran torsion angles phi and psi. Here, we explore the accuracies of the assumptions made in interpreting DQ-DRAWS data and demonstrate their fidelity in measuring torsion angles corresponding to a variety of secondary structures irrespective of hydrogen-bonding patterns. It is shown how a simple choice of isotopic labels and experimental conditions allows accurate measurement of backbone secondary structures without any prior knowledge. This approach is considerably more sensitive for determining structure in helices and has comparable accuracy for beta-sheet and extended conformations relative to other methods. We also illustrate the ability of DQ-DRAWS to distinguish between structures in heterogeneous samples.  相似文献   
170.
Amorphous silicon oxycarbide (a-SiOC:H) films produced by remote plasma RPCVD from diethoxymethylsilane (DEMS) were characterized in terms of their basic properties related to the coatings deposited using conventional plasma enhanced PECVD method. The effect of substrate temperature (TS) on the growth rate, chemical composition, structure, and properties of resulting a-SiOC:H films is reported. Film growth is an adsorption-controlled process, wherein two mechanisms can be distinguished with a transition at about TS=70°C. Depending on the temperature, films of different nature can be obtained, from polymer-like to highly crosslinked material with C-Si-O network. The chemical structure of a-SiOC:H films was characterized by FTIR, 13C and 29Si solid-state NMR, and X-ray photoelectron spectroscopes. The a-SiOC:H films were also characterized in terms of their density, refractive index, surface morphology, conformality of coverage, hardness, adhesion to a substrate, and friction coefficient. The films were found to be morphologically homogeneous materials exhibiting good conformality of coverage and small surface roughness. Their refractive index exhibits anomalous effect revealing a minimum value at TS=125°C. Due to their exceptional physical properties a-SiOC:H films produced by RPCVD from DEMS precursor seems to be useful as potential dielectric materials or coatings for various encapsulation applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号