首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1513篇
  免费   50篇
  国内免费   12篇
化学   1078篇
晶体学   10篇
力学   18篇
数学   315篇
物理学   154篇
  2023年   8篇
  2022年   8篇
  2021年   15篇
  2020年   22篇
  2019年   15篇
  2018年   16篇
  2017年   20篇
  2016年   34篇
  2015年   45篇
  2014年   38篇
  2013年   70篇
  2012年   101篇
  2011年   115篇
  2010年   59篇
  2009年   64篇
  2008年   90篇
  2007年   103篇
  2006年   86篇
  2005年   82篇
  2004年   81篇
  2003年   70篇
  2002年   54篇
  2001年   27篇
  2000年   15篇
  1999年   13篇
  1998年   19篇
  1997年   16篇
  1996年   23篇
  1995年   14篇
  1994年   13篇
  1993年   13篇
  1992年   6篇
  1991年   9篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   9篇
  1986年   10篇
  1985年   19篇
  1984年   24篇
  1983年   9篇
  1982年   16篇
  1981年   11篇
  1980年   9篇
  1978年   4篇
  1976年   11篇
  1975年   4篇
  1970年   4篇
  1969年   6篇
  1885年   3篇
排序方式: 共有1575条查询结果,搜索用时 15 毫秒
941.
Novel catalytic activation of the B-B bond by palladium(II)-NHC complexes in presence of a mild base (NaOAc) and an excess of diboron reagent enables chemoselective 1,2-diboration of alkenes, suggesting the heterolytic cleavage of diboron rather than oxidative addition of a B-B bond to the metal.  相似文献   
942.
The synthesis, crystal structure, and magnetic properties of two trinuclear oxo-centered carboxylate complexes are reported and discussed: [Cr3(mu3-O)(mu2-PhCOO)6(H2O)3]NO3.4H2O.2CH3OH (1) and [Cr3(mu3-O)(mu2-PhCOO)2(mu2-OCH2CH3)2(bpy)2(NCS)3] (2). For both complexes the crystal system is monoclinic, with space group C2/c for 1 and P1/n for 2. The structure of complex 1 consists of discrete trinuclear cations, associated NO3- anions, and lattice methanol and water molecules. The structure of complex 2 is built only by neutral discrete trinuclear entities. The most important feature of 2 is the unusual skeleton of the [Cr3O] core due to the lack of peripheral bridging ligands along one side of the triangular core, which is unique among the structurally characterized (mu3-oxo)trichromium(III) complexes. Magnetic measurements were performed in the 2-300 K temperature range. For complex 1, in the high-temperature region (T > 8 K), experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J12S1S2 - 2J13S1S3 - 2J23S2S3 (J12 = J13 = J23) with Jij = -10.1 cm(-1), g = 1.97, and TIP = 550 x 10(-6) emu mol(-1). The antisymmetric exchange interaction plays an important role in the magnetic behavior of the system, so in order to fit the experimental magnetic data at low temperature, a new magnetic model was used where this kind of interaction was also considered. The resulting fitting parameters are the following: Gzz = 0.25 cm(-1), delta = 2.5 cm(-1), and TIP = 550 x 10(-6) emu mol(-1). For complex 2, the experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -2J1(S1S2 + S1S3) - 2J2(S2S3) with J1 = -7.44 cm(-1), J2 = -51.98 cm(-1), and g = 1.99. The magnetization data allows us to deduce the ground term of S = 1/2, characteristic of equilateral triangular chromium(III) for complex 1 and S = 3/2 for complex 2, which is confirmed by EPR measurements.  相似文献   
943.
The hydrothermal reaction of 2-cyanopyrimidine and either CoCl2.6H2O or FeCl2.4H2O affords 2D isostructural coordination polymers [M2(micro-pymca)3]OH.H2O ((M = CoII (1) and FeII (2) pymca = pyrimidine-2-carboxylato). The bisdidentate ligand (pymca) that can be considered an intermediate between bipyrimidine and oxalato is generated in situ from the hydrolysis of 2-cyanopyrimidine. The structure of 1 and 2 consists of heterochiral (6,3) honeycomb layers, crystal water molecules, and OH- anions, the latter playing a template and balancing charge role in the structure. Both compounds exhibit antiferromagnetic interactions between metal ions through the pyrimidine-2-carboxylate bridging ligand. Compound 1 is a spin-canted antiferromagnet leading to weak ferromagnetism at Tc < 10 K with a coercitive field of 580 Oe, whereas compound 2 is an antiferromagnet with TN = 21 K. Fit of the variable-temperature magnetic susceptibility data of 2 to the empirical equation for a regular honeycomb with S = 1 derived from Monte Carlo simulations leads to the following parameters: J = -4.57(2) cm-1 and g = 2.300(4). Density functional calculations have been used to explain the magnetic coupling in 2.  相似文献   
944.
The origin of the chemoselectivity of palladium catalysts containing bidentate phosphine ligands toward either methoxycarbonylation of ethene or the copolymerization of ethene and carbon monoxide was investigated using density functional theory based calculations. For a palladium catalyst containing the electron-donating bis(dimethylphosphino)ethane (dmpe) ligand, the rate determining step for chain propagation is shown to be the insertion of ethene into the metal-acyl bond. The high barrier for chain propagation is attributed to the low stability of the ethene intermediate, (dmpe)Pd(ethene)(C(O)CH3). For the competing methanolysis process, the most likely pathway involves the formation of (dmpe)Pd(CH3OH)(C(O)CH3) via dissociative ligand exchange, followed by a solvent mediated proton-transfer/reductive- elimination process. The overall barrier for this process is higher than the barrier for ethene insertion into the palladium-acetyl bond, in line with the experimentally observed preference of this type of catalyst toward the formation of polyketone. Electronic bite angle effects on the rates of ethene insertion and ethanoyl methanolysis were evaluated using four electronically and sterically related ligands (Me)2P(CH2)nP(Me)2 (n = 1-4). Steric effects were studied for larger tert-butyl substituted ligands using a QM/MM methodology. The results show that ethene coordination to the metal center and subsequent insertion into the palladium-ethanoyl bond are disfavored by the addition of steric bulk around the metal center. Key intermediates in the methanolysis mechanism, on the other hand, are stabilized because of electronic effects caused by increasing the bite angle of the diphosphine ligand. The combined effects explain successfully which ligands give polymer and which ones give methyl propionate as the major products of the reaction.  相似文献   
945.
Microwave irradiation promotes the rapid O,N-acylation-cyclodehydration cascade reaction of oximes and acid chlorides to give oxazoles.  相似文献   
946.
The synthesis, crystal structure, and magnetic properties of a one-dimensional compound, {[Mn(hfac)2]2(biradical)}n (1), resulting from the coordination of bis(hexafluoroacethylacetonato)manganese(II) [Mn(hfac)2] with a biradical obtained by grafting two nitronyl nitroxide radicals in the 5 and 5' positions of a 2,2'-bipyridine ligand are described. Compound 1 crystallizes in the triclinic P space group with the following parameters: a = 11.905(2) A, b = 12.911(2) A, c = 20.163(3) A, alpha = 73.556(3) degrees , beta = 80.850(3) degrees , gamma = 82.126(3) degrees , Z = 2. The bipyridyl moiety acts as a chelate toward one [Mn(hfac)2] unit, while the pendent nitronyl nitroxide radicals are symmetrically bound in trans-configuration to additional [Mn(hfac)2] units. The result is infinite chains running along the c axis direction with the biradical bridging [Mn(hfac)2] units with pending bipyridine/Mn(hfac)2 cores. The magnetic behavior is characteristic of ferrimagnetic chains. Qualitatively we observe first the antiferromagnetic coupling (J2) of each manganese(II) center with two nitronyl nitroxide moieties, leading to a minimum in the chiT product of 6.63 emu K mol(-1) observed at 70 K and corresponding to a ground spin state S = 3/2 plus one extra spin S = 5/2 coming from the pending manganese(II) center. The increase of chiT at lower temperature is understood as a fictive ferromagnetic coupling related to the true antiferromagnetic coupling J1 of the pseudospin S = 3/2 with spin S = 5/2 of the pending manganese(II). Along this approach (H = -JSiSj) the best fit (300-8 K) of the experimental data leads to J1 = -0.622 +/- 0.022 cm(-1) and J2 = -203 +/- 3 cm(-1) with g(Rad) = 2.0017 +/- 0.0015 and g(Mn) = 2.0017 +/- 0.0015.  相似文献   
947.
Robust fitting of core level photoemission spectra is often central to reliable interpretation of X-ray photoelectron spectroscopy (XPS) data. One key element is employment of the correct line shape function for each spectral component. In this study, we consider this topic, focusing on XPS data from atomic adsorbates, namely, O and S, on Fe(110). The potential of employing density functional theory (DFT) for generating adsorbate projected electronic density of states (PDOS) to support line shape selection is explored. O 1s core level XPS spectra, acquired from various ordered overlayers of chemisorbed O, all display an equivalent asymmetric line shape. Previous work suggests that this asymmetry is a result of finite O PDOS in the vicinity of the Fermi level, allowing O 1s photoexcitation to induce a weighted continuum of final states through electron-hole pair excitation. This origin is corroborated by O DFT-PDOS generated for an optimised five-layer Fe(110)(2 × 2)-O slab. Adsorbate DFT-PDOS were also computed for Fe(110) -S. As, similar to adsorbed O, there is a significant continuous distribution of states about the Fermi level, it is proposed that the S 2p XPS core levels should also have asymmetric profiles. S 2p XPS data acquired from Fe(110) -S, and their subsequent fitting, verify this prediction, suggesting that DFT-PDOS could aid line shape selection.  相似文献   
948.
A generalized NRTL model was previously proposed for the modeling of non ideal systems and was extended to the prediction of phase equilibria under pressure according to the cubic NRTL-PR EoS. In this work, the model is reformulated with a predictive kij temperature and composition dependent mixing rule and new interaction parameters are proposed between permanent gases, ethane and nitrogen with hydrocarbons, ethane with water and ethylene glycol. Results obtained for excess enthalpies, liquid-vapor and liquid-liquid equilibria are compared with those provided by the literature models, such as VTPR, PPR78, CPA and SRKm. A wide variety of mixtures formed by very asymmetric compounds, such as hydrocarbons, water and ethylene glycols are considered and special attention is paid to the evolution of kij with respect to mole fractions and temperature.  相似文献   
949.
Two new heterobimetallic manganese(II)-copper(II) coordination polymers of formulas [Mn(2)Cu(2)(Me(3)mpba)(2)(H(2)O)(6)]·8H(2)O (1) and [Mn(2)Cu(2)(Me(4)ppba)(2)(H(2)O)(6)]·8H(2)O (2) [Me(3)mpba = 2,4,6-trimethyl-N,N'-1,3-phenylenebis(oxamate) and Me(4)ppba = 2,3,5,6-tetramethyl-N,N'-1,4-phenylenebis(oxamate)] have been synthesized following a molecular-programmed self-assembly method from the corresponding dicopper(II) complexes acting as metalloligands toward Mn(II) ions. 1 and 2 consist of neutral Mn(II)(2)Cu(II)(2) layers with a brick-wall structure made up of oxamato-bridged Mn(II)Cu(II) chains connected through double meta- (1) and para-substituted (2) permethylated phenylene spacers. Overall magnetic (1) and nonmagnetic (2) layer ground states result from the ferro- and antiferromagnetic interchain interactions between the oxamato-bridged Mn(II)Cu(II) ferrimagnetic chains across m- and p-phenylene spacers, respectively. Interestingly, compound 1 exhibits a long-range ferromagnetic ordering with a rather high Curie temperature (T(C)) of 20.0 K.  相似文献   
950.
Queen WL  West JP  Hudson J  Hwu SJ 《Inorganic chemistry》2011,50(21):11064-11068
Polyoxometallates (POMs) are desirable in materials applications ranging from uses as catalysts in selective oxidation reactions to molecular-like building blocks for the preparation of new extended solids. With the use of an unprecedented approach involving high temperature, molten salt methods, a fascinating series of salt-inclusion solids (SISs) that contain high nuclearity POMs has been isolated for the first time. Cs(11)Na(3)(V(15)O(36))Cl(6) (1) was synthesized using the eutectic NaCl/CsCl flux (mp 493 °C) which serves as a reactive solvent in crystal growth and allows for the SIS formation. Its framework can be viewed as an "ionic" lattice composed of alternately packed counterions of Cl-centered [V(15)O(36)Cl](9-) clusters (V15; S = 11/2) and multinuclear [Cs(9)Na(3)Cl(5)](7+) cations. In light of the structural analysis, 1 was proven to be soluble in water giving rise to a dark green solution that is similar in color to single crystals of the title compound. Infrared spectroscopy of the solid formed from fast evaporation of the solution supports the presence of dissolved V15 clusters. Also noteworthy is the magnetization of 1 at 2 K, which reveals an s-shaped plot resembling that of superparamagnetic materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号