首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2717篇
  免费   129篇
  国内免费   15篇
化学   1962篇
晶体学   13篇
力学   80篇
数学   408篇
物理学   398篇
  2023年   22篇
  2022年   37篇
  2021年   61篇
  2020年   69篇
  2019年   56篇
  2018年   66篇
  2017年   59篇
  2016年   111篇
  2015年   97篇
  2014年   117篇
  2013年   203篇
  2012年   226篇
  2011年   224篇
  2010年   141篇
  2009年   116篇
  2008年   182篇
  2007年   175篇
  2006年   127篇
  2005年   120篇
  2004年   132篇
  2003年   88篇
  2002年   68篇
  2001年   27篇
  2000年   25篇
  1999年   22篇
  1998年   13篇
  1997年   9篇
  1996年   22篇
  1995年   11篇
  1994年   13篇
  1993年   15篇
  1992年   17篇
  1991年   11篇
  1990年   14篇
  1989年   13篇
  1988年   8篇
  1987年   16篇
  1985年   12篇
  1984年   14篇
  1983年   5篇
  1982年   9篇
  1981年   8篇
  1980年   12篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1975年   9篇
  1973年   5篇
  1971年   5篇
排序方式: 共有2861条查询结果,搜索用时 62 毫秒
141.
We present studies of the photoexcited quasiparticle dynamics in Tl(2)Ba(2)Ca(2)Cu(3)O(y) (Tl-2223) using femtosecond optical techniques. Deep into the superconducting state (below 40 K), a dramatic change occurs in the temporal dynamics associated with photoexcited quasiparticles rejoining the condensate. This is suggestive of entry into a coexistence phase which, as our analysis reveals, opens a gap in the density of states (in addition to the superconducting gap), and furthermore, competes with superconductivity resulting in a depression of the superconducting gap.  相似文献   
142.
Discerning the influence of electrochemical reactions on the electrode microenvironment is an unavoidable topic for electrochemical reactions that involve the production of OH and the consumption of water. That is particularly true for the carbon dioxide reduction reaction (CO2RR), which together with the competing hydrogen evolution reaction (HER) exert changes in the local OH and H2O activity that in turn can possibly affect activity, stability, and selectivity of the CO2RR. We determine the local OH and H2O activity in close proximity to a CO2-converting Ag-based gas diffusion electrode (GDE) with product analysis using gas chromatography. A Pt nanosensor is positioned in the vicinity of the working GDE using shear-force-based scanning electrochemical microscopy (SECM) approach curves, which allows monitoring changes invoked by reactions proceeding within an otherwise inaccessible porous GDE by potentiodynamic measurements at the Pt-tip nanosensor. We show that high turnover HER/CO2RR at a GDE lead to modulations of the alkalinity of the local electrolyte, that resemble a 16 m KOH solution, variations that are in turn linked to the reaction selectivity.  相似文献   
143.
The age hardening 6061-T6 aluminium alloy has been chosen as structural material for the core vessel of the material testing Jules Horowitz nuclear reactor. The alloy contains incoherent Al(Cr, Fe, Mn)Si dispersoids whose characterization by energy-filtered transmission electron microscopy (EFTEM) analysis shows a core/shell organization tendency where the core is (Mn, Fe) rich, and the shell is Cr rich. The present work studies the stability of this organization under irradiation. TEM characterization on the same particles, before and after 1 MeV electron irradiation, reveals that the core/shell organization is enhanced after irradiation. It is proposed that the high level of point defects, created by irradiation, ensures a radiation-enhanced diffusion process favourable to the unmixing forces between (Fe, Mn) and Cr. Shell formation may result in the low-energy interface segregation of Cr atoms within the (Fe, Mn) system combined with the unmixing of Cr, Fe and Mn components.  相似文献   
144.
The fragmentation of fragile ions during the application of an isolation waveform for precursor ion selection and the resulting loss of isolated ion intensity is well‐known in ion trap mass spectrometry (ITMS). To obtain adequate ion intensity in the selected reaction monitoring (SRM) of fragile precursor ions, a wider ion isolation width is required. However, the increased isolation width significantly diminishes the selectivity of the channels chosen for SRM, which is a serious problem for samples with complex matrices. The sensitive and selective quantification of many lipid molecules, including ceramides from real biological samples, using a linear ion trap mass spectrometer is also hindered by the same problem because of the ease of water loss from protonated ceramide ions. In this study, a method for the reliable quantification of ceramides using SRM with near unity precursor ion isolation has been developed for ITMS by utilizing alternative precursor ions generated by in‐source dissociation. The selected precursor ions allow the isolation of ions with unit mass width and the selective analysis of ceramides using SRM with negligible loss of sensitivity. The quantification of C18:0‐, C24:0‐ and C24:1‐ceramides using the present method shows excellent linearity over the concentration ranges from 6 to 100, 25 to 1000 and 25 to 1000 nM, respectively. The limits of detection of C18:0‐, C24:0‐ and C24:1‐ceramides were 0.25, 0.25 and 5 fmol, respectively. The developed method was successfully applied to quantify ceramides in fetal bovine serum. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
145.
We report the synthesis of a cyclen‐based ligand (4,10‐bis[(1‐oxidopyridin‐2‐yl)methyl]‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid= L1 ) containing two acetate and two 2‐methylpyridine N‐oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the GdIII complex may be sufficient for biological applications. A detailed structural study of the complexes by 1H NMR spectroscopy and DFT calculations indicates that they adopt an anti‐Δ(λλλλ) conformation in aqueous solution, that is, an anti‐square antiprismatic (anti‐SAP) isomeric form, as demonstrated by analysis of the 1H NMR paramagnetic shifts induced by YbIII. The water‐exchange rate of the GdIII complex is ${k{{298\hfill \atop {\rm ex}\hfill}}}$ =6.7×106 s?1, about a quarter of that for the mono‐oxidopyridine analogue, but still about 50 % higher than the ${k{{298\hfill \atop {\rm ex}\hfill}}}$ of GdDOTA (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The 2‐methylpyridine N‐oxide chromophores can be used to sensitize a wide range of LnIII ions emitting in both the visible (EuIII and TbIII) and NIR (PrIII, NdIII, HoIII, YbIII) spectral regions. The emission quantum yield determined for the YbIII complex (${Q{{{\rm L}\hfill \atop {\rm Yb}\hfill}}}$ =7.3(1)×10?3) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.  相似文献   
146.
Hanji paper, the paper material traditionally used in Korea, is in the focus of the present aging and mechanistic study. As raw materials and historic recipes for paper making are still available for Hanji today, specimen resembling historical material at the point of production can be prepared. While from that starting point, historical material had taken the path of natural aging, newly prepared samples—prepared according to both historic and current recipes—were artificially aged, and both aging modes can be compared. For the first time, an in-depth chemical and mathematical analysis of the aging processes for Hanji is presented. The aging of Hanji paper, resulting in hydrolysis and oxidation processes, was addressed by means of selective fluorescene labeling of oxidized groups in combination with gel permeation chromatography, providing profiles of carbonyl and carboxyl groups relative to the molar mass distribution. Starting Hanji showed the highest molecular weight (>1,400 kDa) ever reported for paper. We have defined two critical parameters for comparison of the paper samples: half-life DP (the time until every chain is split once on average) and life expectancy (the time until an average DP of failure is reached and no further mechanical stress can be tolerated). The two values were determined to be approximately 500 and 4,000 years, respectively, for the Hanji samples, provided there is no UV radiation. The rate of cellulose chain scission under accelerated aging (80 °C, RH 65 %), was about 600 times faster than under natural conditions. In addition, cellulose degradation of Hanji paper under accelerated aging condition was about 2–3 times slower than that of historical rag paper as those used in medieval Europe.  相似文献   
147.
Nanostructured ZnSe-graphene/TiO2 was synthesized by a hydrothermal-assisted approach. ZnSe-graphene/TiO2 exhibited favorable adsorption of rhodamine B, a wide wavelength absorption range, and efficient charge separation. Reactive oxygen species were generated by the oxidation of 1,5-diphenyl carbazide to 1,5-diphenyl carbazone. The sonocatalytic reaction mechanism was pro-posed. These findings potentially broaden the applications of sonocatalytic technologies.  相似文献   
148.
We present a method to build potential energy surfaces with the correct permutational symmetry of identical atoms. It is explained and applied to an A $_2$ B $_2$ molecular system. This method allows us to use different reference geometries, which are often needed in large molecules.  相似文献   
149.
The use of lipases in industrial processes can result in products with high levels of purity and at the same time reduce pollutant generation and improve both selectivity and yields. In this work, lipase from Thermomyces lanuginosus was immobilized using two different techniques. The first involves the hydrolysis/polycondensation of a silica precursor (tetramethoxysilane (TMOS)) at neutral pH and ambient temperature, and the second one uses tetraethoxysilane (TEOS) as the silica precursor, involving the hydrolysis and polycondensation of the alkoxide in appropriate solvents. After immobilization, the enzymatic preparations were dried using the aerogel and xerogel techniques and then characterized in terms of their hydrolytic activities using a titrimetric method with olive oil and by the formation of 2-phenylethyl acetate in a transesterification reaction. The morphological properties of the materials were characterized using scanning electron microscopy, measurements of the surface area and pore size and volume, thermogravimetric analysis, and exploratory differential calorimetry. The results of the work indicate that the use of different silica precursors (TEOS or TMOS) and different drying techniques (aerogel or xerogel) can significantly affect the properties of the resulting biocatalyst. Drying with supercritical CO2 provided higher enzymatic activities and pore sizes and was therefore preferable to drying, using the xerogel technique. Thermogravimetric analysis and differential scanning calorimetry analyses revealed differences in behavior between the two biocatalyst preparations due to the compounds present.  相似文献   
150.
Mullite is an aluminosilicate widely used as a structural material for high temperature applications. This paper studies the effect of the gelation temperature on the synthesis of two mullite precursors: polymeric and colloidal silica, using both in fully-hydrolyzed silica sol, derived from sodium silicate. The gels were synthesized using aqueous silicic acid and aluminum nitrate. Ethylene glycol was added into polymeric gels. Two gelation temperatures were used: 80 and 100 °C. In the polymeric precursor, the increasing of the gelation temperature caused an increase in the silica incorporation inside the mullite crystalline lattice at 1,000 °C, and it also generated an increase in the reaction extent at all calcination temperatures. In the colloidal precursors, these effects were more intense than in the polymeric precursors in terms of yield. Colloidal samples calcined at 1,250 °C crystallized cristobalite and alpha alumina in addition to mullite when they were previously gelled at 80 °C. On the other hand, the same sample gelled at 100 °C led to only crystallized mullite. The reaction extent increased by more than 20 % for colloidal samples gelled at 100 °C compared to colloidal samples gelled at 80 °C (calcined at 1,250 °C). This increase was due to the almost total incorporation of alumina and silica in the crystalline lattice of mullite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号