首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   18篇
  国内免费   2篇
化学   357篇
晶体学   2篇
力学   6篇
数学   54篇
物理学   55篇
  2024年   3篇
  2023年   5篇
  2022年   7篇
  2021年   13篇
  2020年   12篇
  2019年   6篇
  2018年   5篇
  2017年   7篇
  2016年   19篇
  2015年   14篇
  2014年   16篇
  2013年   37篇
  2012年   35篇
  2011年   37篇
  2010年   19篇
  2009年   13篇
  2008年   21篇
  2007年   24篇
  2006年   19篇
  2005年   19篇
  2004年   19篇
  2003年   13篇
  2002年   20篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1989年   6篇
  1988年   2篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1982年   6篇
  1981年   2篇
  1980年   7篇
  1979年   7篇
  1978年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有474条查询结果,搜索用时 15 毫秒
401.
Abstract Chlorosomes, the main light-harvesting complexes of green photosynthetic bacteria, contain bacteriochlorophyll (BChl) molecules in the form of self-assembling aggregates. To study the role of esterifying alcohols in BChl aggregation we have prepared a series of bacteriochlorophyllide c (BChlide c) derivatives differing in the length of the esterifying alcohol (C(1), C(4), C(8) and C(12)). Their aggregation behavior was studied both in polar (aqueous buffer) and nonpolar (hexane) environments and the esterifying alcohols were found to play an essential role. In aqueous buffer, hydrophobic interactions among esterifying alcohols drive BChlide c derivatives with longer chains into the formation of dimers, while this interaction is weak for BChlides with shorter esterifying alcohols and they remain mainly as monomers. All studied BChlide c derivatives form aggregates in hexane, but the process slows down with longer esterifying alcohols due to competing hydrophobic interactions with hexane molecules. In addition, the effect of the length of the solvent molecules (n-alkanes) was explored for BChl c aggregation. With an increasing length of n-alkane molecules, the hydrophobic interaction with the farnesyl chain becomes stronger, leading to a slower aggregation rate. The results show that the hydrophobic interaction is the driving force for the aggregation in an aqueous environment, while in nonpolar solvents it is the hydrophilic interaction.  相似文献   
402.
403.
In this work we investigate the performance of the DFT method, augmented with an empirical dispersion function (DFT-D), paired with the PCM implicit solvation model, for the computation of noncovalent interaction energies of biologically-relevant, solvated model complexes. It is found that this method describes intermolecular interactions within water and ether (protein-like) environments with roughly the same accuracy as in the gas phase. Another important finding is that, when environmental effects are taken into account, the empirical dispersion term associated with the DFT-D method need be modified very little (or not at all), in order to obtain the optimum, most well balanced, performance.  相似文献   
404.
The possibility to change the Seebeck coefficient sign has been evidenced in the LaCoO3 perovskites. A small hole doping (Co3+/Co4+) will result in a large positive Seebeck coefficient, while a small electron doping (Co2+/Co3+) will give a large negative Seebeck coefficient at room temperature. This mechanism is shown to be efficient as well in 1D Ca3Co2O6 deriving from hexagonal perovskites. By doping Ca3Co2O6 with Ti4+, a mixed valency Co2+/Co3+ is introduced and the thermopower turns negative.

At high temperature, the Seebeck coefficients of LaCoO3 and related compounds decrease to small values due to the spin state transition. The values converge towards a positive value, close to +20 μV/K at 800 K. This suggests that at high T, the Seebeck coefficients in the case of localized charges do not depend on the doping, but only on the spin and orbital degeneracies. On the other hand, in the case of metallic-like samples as electron-doped manganites, the properties can be described up to high T in terms of a single-band metal. Due to the linear variation of S as a function of T and the almost constant value of ρ, the ratio S2/ρ which is crucial for high temperature applications increases.  相似文献   

405.
Lewis acid-base adducts of the alumazene [2,6-(i-Pr)2C6H3NAlMe]3 (1) with pyridine (py) and 4-dimethylaminopyridine (dmap) were synthesized and structurally characterized: 1(py)2 (2), 1(py)3 (3), 1(dmap)2 (4), and 1(py)(dmap) (5). The bisadducts 2, 4, and 5 form the trans isomers. The trisadduct 3 exhibits an unexpected cis-cis isomer and can be prepared only in the presence of excess py. The planarity of the alumazene ring is lost upon coordination of the Lewis base molecules. A comparison of the Al-N(base) bond distances and pyramidality at Al suggests the higher basicity of dmap. NMR spectroscopy confirms stability to dissociation of the bisadducts in solution while the trisadduct 3 is labile and converts to 2. The thermodynamics of the adduct formation has been investigated experimentally and theoretically. Thermodynamic characteristics of the 1(py)n (n=2, 3) dissociation reactions in the temperature range 25-200 degrees C have been derived from the vapor pressure-temperature dependence measurements by the static tensimetric method. In all experiments, excess py was employed. Quantum chemical computations at the B3LYP/6-31G* level of theory have been performed for the 1(py)n and model complexes [HAlNH]3(py)n (n=1-3). Obtained results indicate that for the gas phase adducts upon increasing the number of py ligands the donor-acceptor Al-N(py) distance increases in accord with decreasing donor-acceptor bond dissociation energies.  相似文献   
406.
A novel core–shell hybrid nanomaterial composed of peculiar maghemite nanoparticles (surface‐active maghemite nanoparticles (SAMNs)) as the core and tannic acid (TA) as the shell was developed by self‐assembly of ferric tannates onto the surface of SAMNs by simple incubation in water. The hybrid nanomaterial (SAMN@TA) was characterized by using UV/Vis, FTIR, and Mössbauer spectroscopies, magnetization measurements, and X‐ray powder diffraction, which provide evidence of a drastic reorganization of the iron oxide surface upon reaction with TA and the formation of an outer shell that consists of a cross‐linked network of ferric tannates. According to a Langmuir isotherm analysis, SAMN@TA offers one of most stable iron complexes of TA reported in the literature to date. Moreover, SAMN@TA was characterized by using electrical impedance spectroscopy, voltammetry, and chronoamperometry. The nanostructured ferric tannate interface showed improved conductivity and selective electrocatalytic activity toward the oxidation of polyphenols. Finally, a carbon‐paste electrode modified with SAMN@TA was used for the determination of polyphenols in blueberry extracts by square‐wave voltammetry.  相似文献   
407.
A pulse sequence for the selective recoupling of heteronuclear dipolar interactions in mobile amorphous phase of powdered semicrystalline polymers is described. 1H-13C dipolar interactions are selectively measured by PISEMA-type sequence. Selection of 13C magnetization originating from amorphous phase is achieved by a train of saturation pulses followed by a short delay and a direct excitation pulse on 13C spins. The development of undesired net 13C magnetization during the recoupling sequence is prevented by the efficient "reverse" 13C --> 1H cross-polarization. The efficacy of the 2D method to measure 1H-13C dipolar couplings selectively for mobile components is demonstrated on powdered crystalline L-alanine, semicrystalline polyethylene, and nanocomposite polyamide-6/montmorillonite.  相似文献   
408.
Journal of Thermal Analysis and Calorimetry - Coal has played a significant role in daily life. However, the highly effective combustion and reducing combustion-caused hazards of the coal still...  相似文献   
409.
Three large-bite diphosphine dioxide ligands were reacted with lanthanide salts to yield either molecular or polymeric complexes. The two flexible ligands gave bischelate complexes of general formulae [Ln(dppfO2)2Clx(NO3)2−x][FeCl4] and [Ln(dppdO2)2(NO3)2]NO3, where dppfO2 and dppdO2 are bis(diphenylphosphoryl)ferrocene and bis(diphenylphosphoryl)diphenyl ether, respectively. Reactions of the rigid bis(diphenylphosphoryl)benzene (dppbO2) with lanthanide salts yielded linear coordination polymers of a 1:1.5 metal-to-ligand stoichiometry. The compounds were studied by single crystal X-ray diffraction, IR spectroscopy, mass spectrometry, and TG/DSC techniques.  相似文献   
410.
The simultaneous detection of multiple analytes is an important consideration for the advancement of biosensor technology. Currently, few sensor systems possess the capability to accurately and precisely detect multiple antigens. This work presents a simple approach for the functionalization of sensor surfaces suitable for multichannel detection. This approach utilizes self-assembled monolayer (SAM) chemistry to create a nonfouling, functional sensor platform based on biotinylated single-stranded DNA immobilized via a streptavidin bridge to a mixed SAM of biotinylated alkanethiol and oligo(ethylene glycol). Nonspecific binding is minimized with the nonfouling background of the sensor surface. A usable protein chip is generated by applying protein-DNA conjugates which are directed to specific sites on the sensor chip surface by utilizing the specificity of DNA hybridization. The described platform is demonstrated in a custom-built surface plasmon resonance biosensor. The detection capabilities of a sensor using this protein array have been characterized using human chorionic gonadotropin (hCG). The platform shows a higher sensitivity in detection of hCG than that observed using biotinylated antibodies. Results also show excellent specificity in protein immobilization to the proper locations in the array. The vast number of possible DNA sequences combine with the selectivity of base-pairing makes this platform an excellent candidate for a sensor capable of multichannel protein detection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号