首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1133篇
  免费   50篇
  国内免费   3篇
化学   885篇
晶体学   14篇
力学   25篇
数学   47篇
物理学   215篇
  2023年   9篇
  2022年   13篇
  2021年   26篇
  2020年   32篇
  2019年   36篇
  2018年   20篇
  2017年   17篇
  2016年   42篇
  2015年   36篇
  2014年   57篇
  2013年   75篇
  2012年   91篇
  2011年   101篇
  2010年   60篇
  2009年   56篇
  2008年   88篇
  2007年   86篇
  2006年   71篇
  2005年   57篇
  2004年   56篇
  2003年   38篇
  2002年   39篇
  2001年   13篇
  2000年   16篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有1186条查询结果,搜索用时 437 毫秒
51.
Micro‐RNAs (miRNAs) are small, endogenous, singlestranded, and noncoding RNAs. The miRNAs have been found to perform important functions in many cellular processes, such as development, proliferation, differentiation, and apoptosis. Circulating miRNAs have been proposed as emerging biomarkers in diseases such as cancer, diabetes, and cardiovascular disease including acute myocardial infarction (AMI). In this study, we developed CE with LIF (CE‐LIF) using fluorescence‐labeled DNA probe for determination of low abundance miRNA in cell extracts. The target miRNA is miRNA‐499, a biomarker candidate of AMI with low abundance in biological samples. In order to measure the trace level of miRNA, we optimized the hybridization conditions such as hybridization time, temperature, and buffer solution. The highest fluorescence intensity of the hybridized miRNA‐499 was found when hybridization was conducted at 40°C in 50 mM Tris‐acetate (pH 8.0) buffer containing 50 mM NaCl, and 10 mM EDTA for 15 min. The hybridized miRNA‐499 was detected in cultured H9c2 cardiomyoblast cells and the analysis of miRNA‐499 was completed within 1 h using CE‐LIF. These results showed the potential of CE for fast, specific, and sensitive high‐throughput analysis of low‐abundance miRNAs in cell extracts, biofluids, and tissues.  相似文献   
52.
We have synthesised a series of new reactive mesogens with photopolymerisable di-acrylates and their corresponding non-reactive analogues based on the π-conjugated aromatic core, fluorene (F)-di-[thiophene (T)-benzene (B)], using the Stille and Suzuki coupling reaction. The effect of lateral alkyl chains on the 9-position of the central fluorene moiety as well as α, ω- side alkyl chains attached to the π-conjugated aromatic core on the mesomorphism was investigated by utilising differential scanning calorimetry (DSC) and polarising optical microscopy (POM). A wide angle X-ray scattering (WAXS) study at the various temperatures was also carried out to reveal phase structures. Photopolymerisable di-acrylates connected directly to the rigid aromatic core showed higher phase transition temperatures, probably due to the induced dipole moment in comparison with those of a non-reactive methyl–ether counterpart.  相似文献   
53.
Biofuel cells are devices for generating electrical energy directly from chemical energy of renewable biomass using biocatalysts such as enzymes. Efficient electrical communication between redox enzymes and electrodes is essential for enzymatic biofuel cells. Carbon nanotubes (CNTs) have been recognized as ideal electrode materials because of their high electrical conductivity, large surface area, and inertness. Electrodes consisting entirely of CNTs, which are known as CNT paper, have high surface areas but are typically weak in mechanical strength. In this study, cellulose (CL)–CNT composite paper was fabricated as electrodes for enzymatic biofuel cells. This composite electrode was prepared by vacuum filtration of CNTs followed by reconstitution of cellulose dissolved in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Glucose oxidase (GOx), which is a redox enzyme capable of oxidizing glucose as a renewable fuel using oxygen, was immobilized on the CL–CNT composite paper. Cyclic voltammograms revealed that the GOx/CL–CNT paper electrode showed a pair of well-defined peaks, which agreed well with that of FAD/FADH2, the redox center of GOx. This result clearly shows that the direct electron transfer (DET) between the GOx and the composite electrode was achieved. However, this DET was dependent on the type of CNTs. It was also found that the GOx immobilized on the composite electrode retained catalytic activity for the oxidation of glucose.  相似文献   
54.
Antibody‐conjugated magnetic nanoparticles (Ab‐MNPs) have potential in pathogen detection because they allow target cells to be easily separated from complex sample matrices. However, the sensitivity and specificity of pathogen capture by Ab‐MNPs generally vary according to the types of MNPs, antibodies, and sample matrices, as well as preparation methods, including immobilization. Therefore, achieving a reproducible analysis utilizing Ab‐MNPs as a pathogen detection method requires accurate characterization of Ab‐MNP capture ability and standardization of all handling processes. In this study, we used high‐resolution CE‐single strand conformational polymorphism coupled with a stuffer‐free multiplex ligation‐dependent probe amplification system to characterize Ab‐MNPs. The capture ability of Ab‐MNPs targeting Salmonella enteritidis and nine pathogens, including S. enteritidis, was analyzed in phosphate buffer and milk. The effect of storage conditions on the stability of Ab‐MNPs was also assessed. The results showed that the stuffer‐free multiplex ligation‐dependent probe amplification system has the potential to serve as a standard characterization method for Ab‐MNPs. Moreover, the precise characterization of Ab‐MNPs facilitated robust pathogen detection in various applications.  相似文献   
55.
The development of selective electrocatalysts for the chlorine evolution reaction (CER) is majorly restrained by a scaling relation between the OCl and OOH adsorbates, rendering that active CER catalysts are also reasonably active in the competing oxygen evolution reaction (OER). While theory predicts that the OCl versus OOH scaling relation can be circumvented as soon as the elementary reaction steps in the CER comprise the Cl rather than the OCl adsorbate, it was demonstrated recently that PtN4 sites embedded in a carbon nanotube follow this theoretical prediction. Advanced experimental analyses illustrate that the PtN4 sites also reveal a different reaction kinetics compared to the industrial benchmark of dimensionally stable anodes (DSA). A reverse Volmer–Heyrovsky mechanism was identified, in which the rate-determining Volmer step for small overpotentials is followed by the kinetically limiting Heyrovsky step for larger overpotentials. Since the PtN4 sites excel DSA in terms of activity and chlorine selectivity, we suggest the Cl intermediate as well as the reverse Volmer–Heyrovsky mechanism as the design criteria for the development of next-generation electrode materials beyond DSA.  相似文献   
56.
The incorporation of permeation enhancers in topical preparations has been recognized as a simple and valuable approach to improve the penetration of antifungal agents into toenails. In this study, to improve the toenail delivery of efinaconazole (EFN), a triazole derivative for onychomycosis treatment, topical solutions containing different penetration enhancers were designed, and the permeation profiles were evaluated using bovine hoof models. In an in vitro permeation study in a Franz diffusion cell, hydroalcoholic solutions (HSs) containing lipophilic enhancers, particularly prepared with propylene glycol dicaprylocaprate (Labrafac PG), had 41% higher penetration than the HS base. Moreover, the combination of hydroxypropyl-β-cyclodextrin with Labrafac PG further facilitated the penetration of EFN across the hoof membrane. In addition, this novel topical solution prepared with both lipophilic and hydrophilic enhancers was physicochemically stable, with no drug degradation under ambient conditions (25 °C, for 10 months). Therefore, this HS system can be a promising tool for enhancing the toenail permeability and therapeutic efficacy of EFN.  相似文献   
57.
58.
Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1β production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1β and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction.  相似文献   
59.
Adsorption of dimethyl disulfide (DMDS) on gold colloidal nanoparticle surfaces has been examined to check its binding mechanism. Differently from previous results, DMDS molecules adsorbed on the gold surface at high concentration showed the S–S stretching band at 500 cm−1 in surface-enhanced Raman scattering (SERS) spectra, which indicates the presence of intact adsorption of DMDS molecules. However, it was found that the S–S bond of disulfides was easily cleaved on the gold surface at low concentration. These behaviors were not observed for diethyl disulfide (DEDS) or diphenyl disulfide (DPDS). Our results indicate that DMDS molecules with the shortest alkyl chains on the gold surface can be inserted into self-assembled monolayers (SAMs) without the S–S bond cleavage during self-assembly due to insufficient lateral van der Waals interaction and the low adsorption activity of disulfides, whereas DEDS with longer alkyl chains or DPDS with the weak disulfide bond dissociation energy would not. These unusual DMDS adsorption behaviors were examined by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). We also compared the bonding dissociation energy of the S–S bonds of various disulfides by means of a density functional theory (DFT) calculation.  相似文献   
60.
In this communication, TiO2 nanocrystalline thin films synthesized by a room temperature (27 degrees C) chemical dip process. To our knowledge, this is first report of the preparation of nanoscale rutile TiO2 particles from common inorganic salt at such low temperature. Interestingly, unprecedented dynamic color change accompanies with titanium dioxide grain size, which can be seen with the naked eye that generated curiosity in our mind to check UV-vis absorption, where significant changes were observed. The room temperature synthesized thin films of rutile titanium dioxide make it a potential candidate for high-compatibility material, which can be used in artificial heart valves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号