排序方式: 共有21条查询结果,搜索用时 0 毫秒
11.
电镀及化学镀磁记录介质薄膜的最新进展 总被引:2,自引:0,他引:2
本文综述了近年来国外电镀及化学镀磁记录介质薄膜的最新研究进展、电镀及化学镀镀液组成、工艺条件及其对薄膜性能的影响、存在问题及发展方向等.磁记录介质薄膜的制备,过去一直采用溅射方法,近年来国外开展了电镀及化学镀方法制备的研究.电镀方法包括水溶液电镀(如:Ni-Fe、Fe-Co合金等)和非水溶液电镀(如Tb-Fe、Nd-Fe、Tb-Fe-Co合金等),化学镀则是在Ni-P、Co-P合金的基础上,通过添加其它金属盐,得到磁记录介质薄膜,如:Co-Ni-P、Co-W-P、Co-Mn-P、Co-Ni-Re-P合金等 相似文献
12.
13.
14.
Dr. Zequn Ma Weiyang Li Prof. Yihe Zhang Dr. Rui Shi Dr. Yi Zhang Jingshuang Zhang Dr. Xiangming Li Dr. Limei Lu Prof. Qi An 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(71):16366-16376
Increasing bone formation on the surfaces of implants such as screws, plates, or shims holds great significance for clinical medicine. However, osteogenesis implant coatings that mimic natural bone in terms of both their components and structural features are still lacking. Here we report the biomimetic interface of calcium phosphate (CaP) in a collagen matrix fabricated by controlled mineralization that presents biomimetic porous features. The porous CaP/collagen interface, with a thickness of about 1 μm, significantly enhances osteogenesis, as verified at both the gene and protein levels as well as by in vivo experiments. Taking advantage of the generality of the method, the biomimetic interface was prepared on a variety of substrates, including conductive substrates, 3D metal meshes, plastic or elastic substrates, and even on filter papers. The adjustability and generality of the method have enabled new characterization tests to be developed during experiments on cells and thus should greatly facilitate clinical medicine and tissue engineering. 相似文献
15.
Dr. Changhao Wang Min Hao Qianqian Qi Dr. Jingshuang Dang Xingchen Dong Shuting Lv Ling Xiong Huanhuan Gao Dr. Guoqing Jia Prof. Yashao Chen Prof. Jörg S. Hartig Prof. Can Li 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(9):3472-3477
The diverse secondary structures of nucleic acids are emerging as attractive chiral scaffolds to construct artificial metalloenzymes (ArMs) for enantioselective catalysis. DNA-based ArMs containing duplex and G-quadruplex scaffolds have been widely investigated, yet RNA-based ArMs are scarce. Here we report that a cyclic dinucleotide of c-di-AMP and Cu2+ ions assemble into an artificial metalloribozyme (c-di-AMP⋅Cu2+) that enables catalysis of enantioselective Friedel–Crafts reactions in aqueous media with high reactivity and excellent enantioselectivity of up to 97 % ee. The assembly of c-di-AMP⋅Cu2+ gives rise to a 20-fold rate acceleration compared to Cu2+ ions. Based on various biophysical techniques and density function theory (DFT) calculations, a fine coordination structure of c-di-AMP⋅Cu2+ metalloribozyme is suggested in which two c-di-AMP form a dimer scaffold and the Cu2+ ion is located in the center of an adenine-adenine plane through binding to two N7 nitrogen atoms and one phosphate oxygen atom. 相似文献
16.
17.
Dan Fan Juan Du Jingshuang Dang Changwei Wang Yirong Mo 《Journal of computational chemistry》2023,44(3):138-148
Perfluorinated cycloparaphenylenes (F-[n]CPP, n = 5–8), boron nitride nanohoop (F-[5]BNNH), and buckybowls (F-BBs) were proposed as anion receptors via anion-π interactions with halide anions (Cl−, Br− and I−), and remarkable binding strengths up to −294.8 kJ/mol were computationally verified. The energy decomposition approach based on the block-localized wavefunction method, which combines the computational efficiency of molecular orbital theory and the chemical intuition of ab initio valence bond theory, was applied to the above anion-π complexes, in order to elucidate the nature and selectivity of these interactions. The overall attraction is mainly governed by the frozen energy component, in which the electrostatic interaction is included. Remarkable binding strengths with F-[n]CPPs can be attributed to the accumulated anion-π interactions between the anion and each conjugated ring on the hoop, while for F-BBs, additional stability results from the curved frameworks, which distribute electron densities unequally on π-faces. Interestingly, the strongest host was proved to be the F-[5]BNNH, which exhibits the most significant anisotropy of the electrostatic potential surface due to the difference in the electronegativities of nitrogen and boron. The selectivity of each host for anions was explored and the importance of the often-overlooked Pauli exchange repulsion was illustrated. Chloride anion turns out to be the most favorable anion for all receptors, due to the smallest ionic radius and the weakest destabilizing Pauli exchange repulsion. 相似文献
18.
Prof. Guijiang Zhou Yue He Bing Yao Jingshuang Dang Prof. Wai‐Yeung Wong Prof. Zhiyuan Xie Prof. Xiang Zhao Prof. Lixiang Wang 《化学:亚洲杂志》2010,5(11):2405-2414
By combining the iridium(III) ppy‐type complex (Hppy=2‐phenylpyridine) with a square‐planar platinum(II) unit, some novel phosphorescent oligometallaynes bearing dual metal centers (viz. IrIII and PtII) were developed by combining trans‐[Pt(PBu3)2Cl2] with metalloligands of iridium possessing bifunctional pendant acetylene groups. Photophysical and computational studies indicated that the phosphorescent excited states arising from these oligometallaynes can be ascribed to the triplet emissive IrIII ppy‐type chromophore, owing to the obvious trait (such as the longer phosphorescent lifetime at 77 K) also conferred by the PtII center. So, the two different metal centers show a synergistic effect in governing the photophysical behavior of these heterometallic oligometallaynes. The inherent nature of these amorphous materials renders the fabrication of simple solution‐processed doped phosphorescent organic light‐emitting diodes (PHOLEDs) feasible by effectively blocking the close‐packing of the host molecules. Saliently, such a synergistic effect is also important in affording decent device performance for the solution‐processed PHOLEDs. A maximum brightness of 3 356 cd m?2 (or 2 708 cd m?2), external quantum efficiency of 0.50 % (or 0.67 %), luminance efficiency of 1.59 cd A?1 (or 1.55 cd A?1), and power efficiency of 0.60 Lm W?1 (or 0.55 Lm W?1) for the yellow (or orange) phosphorescent PHOLEDs can be obtained. These results show the great potential of these bimetallic emitters for organic light‐emitting diodes. 相似文献
19.
Xiaolong Yang Ling Yue Yue Yu Boao Liu Jingshuang Dang Yuanhui Sun Guijiang Zhou Zhaoxin Wu Wai‐Yeung Wong 《Advanced Optical Materials》2020,8(13)
Aggregation‐induced emission (AIE)‐active phosphorescent emitters have intrinsic advantages in time‐gated imaging/sensing and improving the electroluminescent efficiencies of organic light‐emitting devices (OLEDs). However, compared with the very prosperous and fruitful developments of AIE‐active fluorescent emitters and related working mechanisms, the progresses on AIE‐active phosphorescent emitters and associated AIE mechanisms are still relatively slow. Herein, the AIE properties of a series of phosphorescent Pt(II) complexes with two monodentate ligands are reported. Compared with the conventional rigid Pt(II) complexes bearing two bidentate ligands or one tri‐/tetradentate ligand, the incorporation of two monodentate ligands provides the resulting Pt(II) complexes with more room to deform their coordination skeletons from the square‐planar geometry in the ground state to the quasi‐tetrahedral configuration in the excited state, causing poor solution emissions. In doped films and aggregate states, intense emissions are observed for these Pt(II) complexes. The as‐fabricated solution‐processed OLED exhibits an impressively high external quantum efficiency of 21.7%. This study provides an effective way to develop excellent AIE‐active phosphorescent emitters. 相似文献
20.
b轴取向MFI型分子筛膜因其在膜分离、膜催化反应器研究领域的重要应用引起了广泛关注。本文综述了二次生长法合成b轴MFI型分子筛膜的最新研究进展,从晶种的合成、晶种涂覆方式以及二次生长溶液的组成等方面详细总结了调控b取向MFI型分子筛膜合成的方法;比较了不同分子筛膜合成策略的优缺点,及这些合成策略对不同体系的分离效果(分离因子与通量)和催化性能的影响。本文还介绍了近年来二维(2D)分子筛和分子筛纳米片的监测与生长控制方法,自下而上直接合成纳米片与高通量、高选择性分子筛膜合成方面的最新突破。通过深入探讨各种分子筛膜制备策略,对b轴取向分子筛膜制备的发展趋势进行了展望。 相似文献