首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1664篇
  免费   280篇
  国内免费   175篇
化学   1168篇
晶体学   18篇
力学   91篇
综合类   10篇
数学   147篇
物理学   685篇
  2024年   2篇
  2023年   45篇
  2022年   39篇
  2021年   55篇
  2020年   91篇
  2019年   78篇
  2018年   50篇
  2017年   47篇
  2016年   73篇
  2015年   79篇
  2014年   68篇
  2013年   95篇
  2012年   116篇
  2011年   143篇
  2010年   111篇
  2009年   117篇
  2008年   124篇
  2007年   104篇
  2006年   109篇
  2005年   92篇
  2004年   57篇
  2003年   47篇
  2002年   42篇
  2001年   50篇
  2000年   37篇
  1999年   42篇
  1998年   29篇
  1997年   25篇
  1996年   33篇
  1995年   21篇
  1994年   29篇
  1993年   16篇
  1992年   12篇
  1991年   9篇
  1990年   7篇
  1989年   9篇
  1988年   8篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1982年   1篇
排序方式: 共有2119条查询结果,搜索用时 31 毫秒
191.
Using Brownian dynamics simulations, we study the effect of the charge ratio, the surfactant length, and the grafting density on the conformational behavior of the complex formed by the polyelectrolyte brush with oppositely charged surfactants. In our simulations, the polyelectrolyte chains and surfactants are represented by a coarse-grained bead-spring model, and the solvent is treated implicitly. It is found that varying the charge ratio induces different morphologies of surfactant aggregates adsorbed onto the brush. At high charge ratios, the density profiles of surfactant monomers indicate that surfactant aggregates exhibit a layer-by-layer arrangement. The surfactant length has a strong effect on the adsorption behavior of surfactants. The lengthening of surfactant leads to a collapsed brush configuration, but a reswelling of the brush with further increasing the surfactant length is observed. The collapse of the brush is attributed to the enhancement of surfactants binding to polyelectrolyte chains. The reswelling is due to an increase in the volume of adsorbed surfactant aggregates. At the largest grafting density investigated, enhanced excluded volume interactions limit the adsorption of surfactant within the polyelectrolyte brush. We also find that end monomers in polyelectrolyte chains exhibit a bimodal distribution in cases of large surfactant lengths and high charge ratios.  相似文献   
192.
Natural lung surfactant contains less than 40% disaturated phospholipids, mainly dipalmitoylphosphatidylcholine (DPPC). The mechanism by which lung surfactant achieves very low near-zero surface tensions, well below its equilibrium value, is not fully understood. To date, the low surface tension of lung surfactant is usually explained by a squeeze-out model which predicts that upon film compression non-DPPC components are gradually excluded from the air-water interface into a surface-associated surfactant reservoir. However, detailed experimental evidence of the squeeze-out within the physiologically relevant high surface pressure range is still lacking. In the present work, we studied four animal-derived clinical surfactant preparations, including Survanta, Curosurf, Infasurf, and BLES. By comparing compression isotherms and lateral structures of these surfactant films obtained by atomic force microscopy within the physiologically relevant high surface pressure range, we have derived an updated squeeze-out model. Our model suggests that the squeeze-out originates from fluid phases of a phase-separated monolayer. The squeeze-out process follows a nucleation-growth model and only occurs within a narrow surface pressure range around the equilibrium spreading pressure of lung surfactant. After the squeeze-out, three-dimensional nuclei stop growing, thereby resulting in a DPPC-enriched interfacial monolayer to reduce the air-water surface tension to very low values.  相似文献   
193.
The rod–coil diblock copolymers in which the donor–acceptor alternating structures served as the rod segment were synthesized. The supramolecular self-assembly property of the copolymers was investigated in the methanol atmosphere. By changing the assembly condition, well-defined vesicles and porous films were produced, respectively. Pores with different size dispersions were obtained by tuning the methanol atmosphere. Moreover, porous films were also decorated on diverse substrates with nonplanar structures. The investigation on self-assembly properties of this rod–coil copolymer is the complementarity to the self-assembly of rod–coil copolymers. This is a very useful self-assembly method that can be used to prepare the self-assembly nanostructures with donor–acceptor alternating copolymers.  相似文献   
194.
The synthesis and photocatalytic properties of a heteropolyoxoniobate, K(10)[Nb(2)O(2)(H(2)O)(2)][SiNb(12)O(40)]·12H(2)O (1), are reported, revealing an important role of Zr(4+) additives in the crystallization. Compound 1 exhibits overall photocatalytic water splitting activity, and its photocatalytic activity is significantly higher than that of Na(10)[Nb(2)O(2)][SiNb(12)O(40)]·xH(2)O (2). Fluorescence lifetime measurements suggest that the enhanced photocatalytic activity of 1 likely results from a larger yield of longer-lived charge trapping states in 1 due to the coordination of one water molecule to the bridging Nb(5+), leading to highly unsymmetrical seven-coordinated Nb(5+) sites.  相似文献   
195.
Liquid phase hydrogenolysis of ethyl lactate to 1,2‐propanediol was performed over silica supporting cobalt catalysts prepared by two different methods: precipitation‐gel (PG) technique and deposition‐precipitation (DP) procedure. The cobalt species (Co3O4/cobalt phyllosilicate) present in the corresponding calcined PG and DP catalysts were different as a consequence of the preparation methods, and Co OH Co olation and Si O Co oxolation molecular mechanisms were employed to elucidate the chemical phenomena during the different preparation procedures. In addition, the texture (BET), reduction behavior (TPR and in‐situ XRD), surface dispersion and state of cobalt species (XPS), and catalytic performance differ greatly between the samples. Because of small particle size, high dispersion of cobalt species and facile reducibility, the Co/SiO2 catalyst prepared by precipitation‐gel method presented a much higher activity than the catalyst prepared by deposition‐precipitation method. Metallic cobalt is assumed to be the catalytically active site for the hydrogenolysis reaction according to the catalytic results of both cobalt samples reduced at different temperatures and the structure changes after reaction.  相似文献   
196.
Storage stabilities of LiFePO4/C composite at different conditions are investigated in terms of structural and electrochemical evolutions. The results from different aging tests indicate that moisture and temperature are the key factors that have the most profound effects on the structure homogeneity which in turn influences the electrochemical performance of LiFePO4/C. Although the storage in a humid‐hot environment, such as saturated humidity air at 50°C, does not greatly influence the discharging capacity of LiFePO4/C, it does reduce the initial charging capacity, thus the amount of reversible Li+ ions in a practical LiFePO4/graphite cell decreases. This impact is explained by the lithium extraction during the storage, forming olivine FePO4 and associated Li3PO4. Elevated storage temperature also favors the delithiation process. The degree of delithiation increases from about 6% at 50°C to 18% at 80°C. It is also found that re‐calcination at 650°C effectively resolves the problem of the structural heterogeneity of the stored LiFePO4/C. Therefore both the initial charging capacity and coulombic efficiency of the stored sample in the first cycle revert to the original value of the fresh one.  相似文献   
197.
The antibacterial activity of two bisbenzylisoquinoline alkaloids, tetrandrine (Tet) and demethyltetrandrine (d-Tet), alone and in combination with the antibiotics ampicillin (AMP), azithromycin (AZM), cefazolin (CFZ) and levofloxacin (LEV) against 10 clinical isolates of staphylococcal chromosomal cassette mec (SCCmec) III type methicillin-resistant Staphylococcus aureus (MRSA) was studied. Susceptibility to each agent alone was tested using a broth microdilution method. The chequerboard and time-kill tests were used for the combined evaluations. The minimal inhibitory concentrations/minimal bactericidal concentrations (MICs/MBCs, μg/mL) ranges alone were 64-128/256-1,024 for both Tet and d-Tet. Significant synergies against 90% of the isolates were observed for the Tet/CFZ combination, with their MICs being reduced by 75-94% [fractional inhibitory concentration indices (FICIs) ranged from 0.188 to 0.625], respectively. An additive bactericidal result was also observed for the Tet (d-Tet)/CFZ combination in the time-kill experiments. These results demonstrated that Tet and d-Tet enhanced the in vitro inhibitory efficacy of CFZ. Their potential for combinatory therapy of patients infected with MRSA warrants further pharmacological investigation.  相似文献   
198.
Two new C20‐diterpenoid alkaloids, named aconicarchamines A and B ( 1 and 2 , resp.), were isolated from Aconitum carmichaelii. By UV, IR, MS, and 1D‐ and 2D‐NMR analyses, their structures were elucidated as 14,17‐dihydro‐14,17‐dihydroxyajabicine and 15‐O‐acetyllassiocarpine. Compound 1 is the third C20‐diterpenoid alkaloid with the lycoctine skeleton bearing an exocyclic C‐atom at C(14).  相似文献   
199.
Jiang J  Song K  Chen Z  Zhou Q  Tang Y  Gu F  Zuo X  Xu Z 《Journal of chromatography. A》2011,1218(24):3763-3770
We designed and synthesized a cinchonine derivative to be used as a novel chiral monomer. It was employed in a dual role of functional monomer and cross-linking monomer, displaying multi-binding sites for the template (S)-ketoprofen. Monodisperse molecularly imprinted core-shell microspheres were prepared using surface imprinting method on silica gel. The results show a substantial synergistic effect in the enantioselective recognition, confirming our initial hypothesis. Computational simulation of the monomer and template pre-arrangement strongly supports our proposed chiral recognition mechanism for the imprinted microspheres.  相似文献   
200.
A novel single‐electron sodium bond system of H3C···Na? H (I), H3C···Na? OH(II), H3C···Na? F(III), H3C···Na‐CCH(IV), H3C···Na? CN (V) and H3C···Na? NC (VI) complexes has been studied by using MP2/6‐311++G** and MP2/aug‐cc‐pVTZ methods for the first time. We demonstrated that the single‐electron sodium bond H3C···Na? Y formed between H3C and Na? Y (Y?H, OH, F, CCH, CN, and NC) could induce the Na? Y increased and stretching frequencies of I–IV and VI are red‐shifted, including the Na? N bond in complex V is blue‐shifted abnormally. The interaction energies are calculated at two levels of theory [MP2, CCSD(T)] with different basis. The results shows that the strength of binding bond in group 2 (IV–VI) with π electrons are stronger than that of group 1 (I–III) without π electrons. For all complexes, the main orbital interactions between moieties H3C and Na? Y are LP1(C)→LP*1(Na). By comparisons with some related systems, it is concluded that the strength of single‐electron bond is increased in the order: hydrogen bond < bromine bond < sodium bond < lithium bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号