首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
化学   19篇
力学   2篇
数学   2篇
物理学   5篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   10篇
  2010年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
21.
Gold is known to have good biocompatibility because of its inert activity and the surface property can be easily tailored with self-assembled monolayers (SAMs). In previous works, gold surfaces were tailored with homogeneously mixed amine and carboxylic acid functional groups to generate surfaces with a series of isoelectronic points (IEPs). In other words, by tailoring the chemical composition in binary SAMs, different surface potentials can be obtained under controlled pH environments. To understand how the surface potentials affect the interaction at the interface, a binary-SAMs-modified Au electrode on a quartz crystal microbalance with dissipation detection (QCM-D) was used owing to the high weight sensitivity of QCM-D. In QCM-D, the frequency shift and the energy dissipation are monitored simultaneously to determine the adsorption behaviors of the plasmid DNA to surfaces of various potentials in Tris-buffered NaCl solutions of different pH. The results revealed that the plasmid DNA can be adsorbed on the SAM-modified surfaces electrostatically; thus, in general, the amount of adsorbed plasmid DNA decreased with increasing environmental pH and the decreasing ratio of the amine functional groups on the surfaces owing to weaker positive potentials on the surface. For the high amine-containing surfaces, due to the strong electrostatic attraction, denser films were observed, and thus, the apparent thickness decreased slightly. The negatively charged carboxylic acid surfaces can still adsorb the negatively charged plasmid DNA at some conditions. In other words, the electrostatic model cannot explain the adsorption behavior completely, and the induced dipole (Debye) interaction between the charged and polarizable molecules needs to be considered as well.  相似文献   
22.
Polydopamine (PDA) preserves universal coating and metal‐binding ability, and is suitable for application in synthesizing multifunctional agents. Herein, utilizing mesoporous silica assisted deposition to enhance both heterogeneous nucleation and loading amounts of PDA, the magnetic resonance (MR) T1 component (PDA‐Fe3+) and MR T2/computed tomography (CT)/multiphoton luminescence (MPL) component (FePt) have been successfully integrated in aqueous solution. This four‐in‐one (T1, T2, CT, MPL) imaging nanocomposite, FePt@mSiO2 @PDA‐polyethylene glycol (PEG), demonstrated its multi‐imaging power both in vitro/in vivo. According to our in vitro/in vivo results, FePt@mSiO2@PDA‐PEG reveals water‐content‐dependent property in T1 MR imaging, which suggests the necessity of having dual‐modal MR ability in a single particle for the precision diagnosis. Most importantly, this dual (T1,T2)‐MRI/CT contrast agent is demonstrated complementary to each other in the in vivo testing. PDA coated mesoporous silica also offers an advantage of delayed degradation that prevents adverse effects caused by silica fragments before excretion. The potential of this nanocomposites in both drug carrier and photothermal agent was further evaluated by using doxorubicin and monitoring solution temperature after irradiating 808 nm continuous‐wave, respectively The merits of controlled polymerization, enhanced PDA loading, and biofavorable degradation make this methodology promising to other nanoparticle@mSiO2 for a wide range of bioapplications.  相似文献   
23.
Mesoporous solid solutions of anatase-based titanium-vanadium oxides were synthesized from aqueous solutions. The V/Ti ratio was determined by the composition of the deposition solution, while the morphology and nanoscale porosity were controlled using micelles of the surfactants cetyltrimethylammonium bromide (CTAB), or hexadecylamine (HDA). The use of CTAB resulted in mesoporous powders, whereas HDA yielded clusters of nanotubes. As compared to materials of the same composition made without the use of a surfactant, the catalyst made with CTAB had 50% higher catalytic activity, and that made with HDA had 70% higher activity. As compared to titania-supported vanadia catalysts with equivalent vanadium loading and synthesized using wet impregnation, the co-deposited materials exhibited significantly higher (up to 3.8x) catalytic activity.  相似文献   
24.
It is well known that the boundary element method may induce spurious eigenvalues while solving eigenvalue problems. The finding that spurious eigenvalues depend on the geometry of inner boundary and the approach utilized has been revealed analytically and numerically in the literature. However, all the related efforts were focused on eigenproblems involving circular boundaries. On the other hand, the extension to elliptical boundaries seems not straightforward and lacks of attention. Accordingly, this paper performs an analytical investigation of spurious eigenvalues for a confocal elliptical membrane using boundary integral equation methods (BIEM) in conjunction with separable kernels and eigenfunction expansion. To analytically study this eigenproblem, the elliptic coordinates and Mathieu functions are adopted. The fundamental solution is expanded into the separable kernel by using the elliptic coordinates and the boundary densities are expanded by using the eigenfunction expansion. The Jacobian terms may exist in the separable kernel, boundary density and boundary contour integration and they can cancel each other out. Therefore, the orthogonal relations are reserved in the boundary contour integration. In this way, a similar finding about the mechanism of spurious eigenvalues is found and agrees with those corresponding to the annular case. To verify this finding, the boundary element method and the commercial finite-element code ABAQUS are also utilized to provide eigensolutions, respectively, for comparisons. Good agreement is observed from comparisons. Based on the adaptive observer system, the present approach can deal with eigenproblems containing circular and elliptical boundaries at the same time in a semi-analytical manner. By using the BIEM, it is found that spurious eigenvalues are the zeros of the modified Mathieu functions which depend on the inner elliptical boundary and the integral formulation. Finally, several methods including the CHIEF method, the SVD updating technique and the Burton & Miller method are employed to filter out the spurious eigenvalues, respectively. In addition, the efficiency of the CHIEF method is better than those of the SVD updating technique and the Burton & Miller approach, since not only hypersingularity is avoided but also computation effort is saved.  相似文献   
25.
It has been shown that the application of self-assembled monolayers (SAMs) to semiconductors or metals may enhance the efficiency of optoelectronic devices by changing the surface properties and tuning the work functions at their interfaces. In this work, binary SAMs with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were used to modify the surface of Si to fine-tune the work function of Si to an arbitrary energy level. As an electron-donor, amine SAM (from APTMS) produced outward dipole moments, which led to a lower work function. Conversely, electron-accepting thiol SAM (from MPTMS) increased the work function. It was found that the work function of Si changed linearly with the chemical composition and increased with the concentration of thiol SAMs. Because dipoles of opposite directions cancelled each other out, homogeneously mixing them leads to a net dipole moment (hence the additional surface potential) between the extremes defined by each dipole and changes linearly with the chemical composition. As a result, the work function changed linearly with the chemical composition. Furthermore, the amine SAM possessed a stronger dipole than the thiol SAM. Therefore, the SAMs modified with APTMS showed a greater work function shift than did the SAMs modified with MPTMS.  相似文献   
26.
Dynamic secondary ion mass spectrometry (D-SIMS) analysis of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) was conducted using a quadrupole mass analyzer with various combinations of continuous C(60)(+) and Ar(+) ion sputtering. Individually, the Ar(+) beam failed to generate fragments above m/z 200, and the C(60)(+) beam generated molecular fragments of m/z ~1000. By combining the two beams, the auxiliary Ar(+) beam, which is proposed to suppress carbon deposition due to C(60)(+) bombardment and/or remove graphitized polymer, the sputtering range of the C(60)(+) beam is extended. Another advantage of this technique is that the high sputtering rate and associated high molecular ion intensity of the C(60)(+) beam generate adequate high-mass fragments that mask the damage from the Ar(+) beam. As a result, fragments at m/z ~900 can be clearly observed. As a depth-profiling tool, the single C(60)(+) beam cannot reach a steady state for either PET or PMMA at high ion fluence, and the intensity of the molecular fragments produced by the beam decreases with increasing C(60)(+) fluence. As a result, the single C(60)(+) beam is suitable for profiling surface layers with limited thickness. With C(60)(+)-Ar(+) co-sputtering, although the initial drop in intensity is more significant than with single C(60)(+) ionization because of the damage introduced by the auxiliary Ar(+), the intensity levels indicate that a more steady-state process can be achieved. In addition, the secondary ion intensity at high fluence is higher with co-sputtering. As a result, the sputtered depth is enhanced with co-sputtering and the technique is suitable for profiling thick layers. Furthermore, co-sputtering yields a smoother surface than single C(60)(+) sputtering.  相似文献   
27.
This article presents an electrochemical discharge (ECD) method that consists of a combination of chemical methods and electric arc discharges. In the method, 140 V is applied to an Ag electrode from a DC power supply. The arc-discharge between the electrodes produces metallic silver nanoparticles and silver ions in the aqueous solution. Compared with the original arc discharge, this ECD method creates smaller nanoparticles, prevents clumping of the nanoparticles, and shortens the production time. The citrate ions also reduce the silver ions to silver nanoparticles. In addition, the citrate ions cap the surface of the produced silver nanoparticles and the zeta potential increases. In this article, the weight loss of the electrodes and the reduction of silver ions to silver nanoparticles as a function of citrate concentration and electric conductivity of the medium are discussed. Furthermore, the properties of the colloidal silver prepared with ECD are analyzed by UV–Vis spectroscopy, dynamic light scattering, electrophoresis light scattering, and scanning electron microscopy. Finally, a continuous production apparatus is presented for the continuous production of colloidal silver.  相似文献   
28.
A complete study of the modulation equations for the Benjamin–Bona–Mahony equation is performed. In particular, the boundary between the hyperbolic and elliptic regions of the modulation equations is found. When the wave amplitude is small, this boundary is approximately defined by k = 3 $k=\sqrt {3}$ , where k is the wave number. This particular value corresponds to the inflection point of the linear dispersion relation for the BBM equation. Numerical results are presented showing the appearance of the Benjamin–Feir instability when the periodic solutions are inside the ellipticity region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号