首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21115篇
  免费   3625篇
  国内免费   3512篇
化学   16456篇
晶体学   332篇
力学   985篇
综合类   235篇
数学   2084篇
物理学   8160篇
  2024年   69篇
  2023年   418篇
  2022年   780篇
  2021年   795篇
  2020年   869篇
  2019年   835篇
  2018年   760篇
  2017年   792篇
  2016年   1087篇
  2015年   1140篇
  2014年   1426篇
  2013年   1732篇
  2012年   2121篇
  2011年   2152篇
  2010年   1603篇
  2009年   1461篇
  2008年   1550篇
  2007年   1425篇
  2006年   1291篇
  2005年   984篇
  2004年   725篇
  2003年   549篇
  2002年   618篇
  2001年   537篇
  2000年   394篇
  1999年   397篇
  1998年   270篇
  1997年   235篇
  1996年   193篇
  1995年   161篇
  1994年   150篇
  1993年   134篇
  1992年   111篇
  1991年   99篇
  1990年   61篇
  1989年   89篇
  1988年   55篇
  1987年   59篇
  1986年   37篇
  1985年   27篇
  1984年   14篇
  1983年   12篇
  1982年   8篇
  1981年   11篇
  1980年   4篇
  1979年   2篇
  1974年   1篇
  1971年   1篇
  1959年   2篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
A new nematic liquid crystalline polymer as a highly active β-nucleator (LCP-N) of isotactic polypropylene (iPP) was synthesized and characterized. The effect of LCP-N on thermal behavior of the iPP was investigated with differential scanning calorimetry. LCP-N showed a melting transition at 85.0°C and a nematic to isotropic phase transition at 278.0°C. The incorporation of LCP-N could lead to substantial changes in the thermal behavior of the iPP. The nucleating activity of LCP-N mainly depended on its content, mesogenic molecular structure, and thermal history of processing. A high content of β-form could be obtained by the combined effect of the optimum LCP-N concentration and crystallization temperature and time. The Φβ reached 77% when the LCP-N content, crystallization temperature, and crystallization time were 0.4 wt.%, 125°C, and 1 h, respectively.  相似文献   
992.
The mechanisms of the thermal degradation of polyhedral oligomeric octaphenylsilsesquioxane (OPS), octa(nitrophenyl)silsesquioxane (ONPS), and octa(aminophenyl)silsesquioxane (OAPS) were investigated. The –NO2 or –NH2 substituents on the phenyl group affected the mechanism of the POSS thermal degradation. The thermal stabilities of OPS, ONPS, and OAPS were characterized by TG and FTIR. Thermal degradation of OPS included mainly the degradation of caged polyhedral oligomeric silsesquioxane structures and phenyl groups. Nitro or amino substituents decreased its thermal stability. The thermal degradation processes of OPS, ONPS, and OAPS differed. Phenyl groups and cyclobutadiene were observed in the OPS degradation products. Oxygen radicals that caused intensive CO2 release between 350 and 450 °C were generated by the degradation of ONPS –NO2. OAPS released mainly aminophenyl groups at 370 °C, whereas a small number of phenyl groups decomposed at 500 °C. The OAPS reactivity could enhance the thermal stability of POSS structure in the polyimide OAPS composites.  相似文献   
993.
This study focused on preparation and thermal properties of poly(stearyl methacrylate) shell (PSMA) microcapsules containing n-octadecane as a phase change material (PCM). Pentaerythritol triacrylate (PETA) and divinylbenzene (DVB) were employed as crosslinking agents. The surface morphologies, particle sizes, and distributions of the microencapsulated phase change material (microPCM) were studied by scanning electron microscopy. The thermal properties, thermal reliabilities, and thermal stabilities of the microPCMs were investigated by differential scanning calorimetry and thermal gravimetric analysis. The microPCM with DVB exhibits higher phase change enthalpies of melting (87.9 J g?1) and crystallization (94.8 J g?1) and a greater thermal stability in comparison with the microPCM with PETA. The phase change temperatures and enthalpies of the microPCMs varied little after thermal cycles. Thermal images showed that the gypsum board with PSMA/n-octadecane microPCM possessed temperature-regulated property. Therefore, microencapsulated n-octadecane with PSMA as shell has good thermal energy storage and thermal regulation potential.  相似文献   
994.
The electrochemical properties and thermal generation behavior of 18650 Li4Ti5O12/LiMn2O4 batteries were tested before and after overcharge. The experimental results showed that after overcharge, the specific capacity decreased obviously. The higher the current density was, the more obvious the capacity decreased. For instance, the overcharged battery had almost no capacity when the current density increased to 5C. At the same time, the overcharged battery presented a much more apparent thermal runaway trend compared to the normal battery. After measuring the electrochemical impedance spectroscopy of the batteries and characterizing the crystal structure/nanostructure of the electrode materials, these phenomena could be attributed to the following two reasons: (1) the decomposition of the electrolyte arisen from the overcharge process resulted in increased internal resistance; (2) the thermal runaway due to the increased internal resistance resulted in the damage to crystal structure/nanostructure and aggregation of the electrode materials, thus leading to the secondary decrease in capacity.  相似文献   
995.
Activated nitrogen-doped carbons (ANCs) were prepared by carbonization/activation approach using aminated polyvinyl chloride (PVC) as precursor. ANCs exhibit larger porosities and higher specific surface areas than those of their nitrogen-free counterparts for the same KOH/carbon ratio. The specific surface area of ANC-1 is up to 1,398 m2 g?1 even at a low KOH/carbon ratio of 1:1. Fourier transform infrared spectroscopy investigation of the nitrogen-enriched resin precursor indicates the efficient dehydrochlorination of PVC by ethylenediamine at a low temperature. The nitrogen content and the population of nitrogen functionalities strongly depend on the KOH/carbon ratios and decrease drastically after KOH activation as seen from the elemental and X-ray photoelectron spectroscopy analysis. The surface concentration of N-6 and N-Q almost disappears and the dominant nitrogen groups become N-5 after KOH activation. The highest specific capacitance of ANCs is up to 345 F g?1 at a current density of 50 mA g?1 in 6 M KOH electrolyte. ANCs also exhibit a good capacitive behavior at a high scan rate of 200 mV s?1 and an excellent cyclability with a capacitance retention ratio as high as ~93 % at a current density of 2,000 mA g?1 for 5,000 cycles.  相似文献   
996.
Zeolitic imidazolate framework-8 (ZIF-8) is synthesized by typical solvothermal method and subsequently calcined under air and nitrogen atmosphere, respectively. The carbon in the calcined ZIF-8 under nitrogen atmosphere was from the carbonization of the guest molecules, without adding any other carbon sources. The samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and electrochemical analyzer system. When the ZIF-8 is used as electrode materials for a supercapacitor in 6 M KOH electrolyte, it displays a pseudocapacitive behavior. The untreated ZIF-8 and calcined ZIF-8 under air and nitrogen atmosphere electrodes exhibit a specific capacitance of 96, 156, and 185 F g?1, respectively, at a scan rate of 5 mV s?1 and good stability over 1,500 cycles. These results indicate that the ZIF-8 is a promising material for supercapacitors.  相似文献   
997.
A direct approach to important α‐amino phosphonic acids and its derivatives has been developed by using copper‐catalyzed electrophilic amination of α‐phosphonate zincates with O‐acyl hydroxylamines. This amination provides the first example of C? N bond formation which directly introduces acyclic and cyclic amines to the α‐position of phosphonates in one step. The reaction is readily promoted at room temperature with as little as 0.5 mol % of catalyst, and demonstrates high efficiency on a broad substrate scope.  相似文献   
998.
Noble metal nanocrystals (NCs) enclosed with high‐index facets hold a high catalytic activity thanks to the high density of low‐coordinated step atoms that they exposed on their surface. Shape‐control synthesis of the metal NCs with high‐index facets presents a big challenge owing to the high surface energy of the NCs, and the shape control for metal Rh is even more difficult because of its extraordinarily high surface energy in comparison with Pt, Pd, and Au. The successful synthesis is presented of tetrahexahedral Rh NCs (THH Rh NCs) enclosed by {830} high‐index facets through the dynamic oxygen adsorption/desorption mediated by square‐wave potential. The results demonstrate that the THH Rh NCs exhibit greatly enhanced catalytic activity over commercial Rh black catalyst for the electrooxidation of ethanol and CO.  相似文献   
999.
Porous organic frameworks perform a variety of functions, owing to their extremely large surface areas, but the dynamics of the structural elements have never been explored. Our discovery of ultra‐fast molecular rotors (106 Hz at 225 K) in their architectures allows us to look at them from a new perspective. The constructive elements are robust struts and rapid rotors, resulting in a dynamic material whose motion can be frozen or released at will. The rotational motion can be actively regulated in response to guests. As the temperature is increased, the rotors spin ever faster, approaching free‐rotational diffusion at 550 K. The unusual combination of remarkable nanoporosity with fast dynamics is intriguing for engineering oscillating dipoles and producing responsive materials with switchable ferroelectricity, and for applications spanning from sensors to actuators, which capture and release chemicals on command.  相似文献   
1000.
Direct amination of heteroarenes and arenes has been achieved in a one‐pot C? H zincation/copper‐catalyzed electrophilic amination procedure. This amination method provides an efficient and rapid approach to access a diverse range of heteroaromatic and aromatic amines including those previously inaccessible using C? H amination methods. The mild reaction conditions and good functional‐group compatibility demonstrate its great potential for the synthesis of important and complex amines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号