首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2593篇
  免费   92篇
  国内免费   17篇
化学   1665篇
晶体学   48篇
力学   49篇
数学   270篇
物理学   670篇
  2023年   15篇
  2022年   34篇
  2021年   38篇
  2020年   46篇
  2019年   42篇
  2018年   54篇
  2017年   43篇
  2016年   86篇
  2015年   66篇
  2014年   74篇
  2013年   170篇
  2012年   165篇
  2011年   206篇
  2010年   106篇
  2009年   121篇
  2008年   149篇
  2007年   155篇
  2006年   126篇
  2005年   97篇
  2004年   102篇
  2003年   85篇
  2002年   86篇
  2001年   52篇
  2000年   46篇
  1999年   29篇
  1998年   17篇
  1997年   22篇
  1996年   23篇
  1995年   21篇
  1994年   22篇
  1993年   20篇
  1992年   18篇
  1991年   13篇
  1990年   24篇
  1989年   29篇
  1988年   17篇
  1987年   13篇
  1986年   18篇
  1985年   16篇
  1984年   22篇
  1983年   17篇
  1982年   14篇
  1981年   26篇
  1980年   17篇
  1979年   16篇
  1978年   21篇
  1977年   17篇
  1976年   19篇
  1975年   18篇
  1974年   11篇
排序方式: 共有2702条查询结果,搜索用时 15 毫秒
101.
102.
A polyacrylonitrile (PAN) fiber was adopted for the backbone of a chelate polymer and poly(acrylo‐amidino ethylene amine) (PAEA) was prepared through a one‐step reaction between the PAN fiber and ethylenediamine (EDA). The maximum removal capacity and degree of substitution were 7.8 meq per gram of dried PAEA and 98%, respectively. The PAEA was tested as an adsorbent in single and two‐component metal aqueous solutions under changing pH. The Cu2+ ion accomplished maximum adsorption amount at pH 3 and the order of maximum adsorbed amounts on PAEA is Cu2+ > Ag+ > Zn2+ > Ni2+ > Pb2+ in molar basis. FT‐IR spectroscopy was employed to characterize the chemical bonding in metal aqueous solutions and surface morphology was examined using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
103.
This paper describes the design, fabrication, and test of a PDMS/PMMA-laminated microfluidic device for an immunosensing biochip. A poly(dimethyl siloxane)(PDMS) top substrate molded by polymer casting and a poly(methyl methacrylate)(PMMA) bottom substrate fabricated by hot embossing are bonded with pressure and hermetically sealed. Two inlet ports and an air vent are opened through the PDMS top substrate, while gold electrodes for electrochemical biosensing are patterned onto the PMMA bottom substrate. The analyte sample is loaded from the sample inlet port to the detection chamber by capillary force, without any external intervening forces. For this and to control the time duration of sample fluid in each compartment of the device, including the inlet port, diffusion barrier, reaction chamber, flow-delay neck, and detection chamber, the fluid conduit has been designed with various geometries of channel width, depth, and shape. Especially, the fluid path has been designed so that the sample flow naturally stops after filling the detection chamber to allow sufficient time for biochemical reaction and subsequent washing steps. As model immunosensing tests for the microfluidic device, functionalizations of ferritin and biotin to the sensing surfaces on gold electrodes and their biospecific interactions with antiferritin antiserum and streptavidin have been investigated. An electrochemical detection method for immunosensing by biocatalyzed precipitation has been developed and applied for signal registration. With the biochip, the whole immunosensing processes could be completed within 30 min.  相似文献   
104.
The excitation-energy-hopping (EEH) times within two-dimensional cyclic zinc(II)-porphyrin arrays 5 and 6, which were prepared by intermolecular coordination and ring-closing metathesis reaction of olefins, were deduced by modeling the EEH process based on the anisotropy depolarization as well as the exciton-exciton annihilation dynamics. Assuming the number of energy-hopping sites N = 5 and 6, the two different experimental observables, that is, anisotropy depolarization and exciton-excition annihilation times, consistently give the EEH times of 8.0 +/- 0.5 and 5.3 +/- 0.6 ps through the 1,3-phenylene linkages of 5 and 6, respectively. Accordingly, the self-assembled cyclic porphyrin arrays have proven to be well-defined two-dimensional models for natural light-harvesting complexes.  相似文献   
105.
meso-Pyridine-appended zinc(II) porphyrins Mn and their meso-meso-linked dimers Dn assemble spontaneously, in noncoordinating solvents such as CHCl3, into tetrameric porphyrin squares Sn and porphyrin boxes Bn, respectively. Interestingly, formation of Bn from Dn proceeds via homochiral self-sorting assembly, which has been verified by optical separations of B1 and B2. Optically pure enantiomers of B1 and B2 display strong Cotton effects in the CD spectra, which reflect the length of the pyridyl arm, thus providing evidence for the exciton coupling between the noncovalent neighboring porphyrin rings. Excitation energy migration processes within Bn have been investigated by steady-state and time-resolved spectroscopic methods in conjunction with polarization anisotropy measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly associated with the excitation energy migration process within the Bn boxes, where the exciton-exciton annihilation time and the polarization anisotropy rise time are well described in terms of the F?rster-type incoherent energy hopping model by assuming a number of hopping sites of N = 4 and an exciton coherence length of L = 2. Consequently, the excitation energy hopping rates between the zinc(II) diporphyrin units have been estimated for B1 (48 ps)(-1), B2 (98 +/- 3 ps)(-1), and B3 (361 +/- 6 ps)(-1). Overall, the self-assembled porphyrin boxes Bn serve as a well-defined three-dimensional model for the light-harvesting complex.  相似文献   
106.
The multidentate dicarbollide ligand nido-7,8-(NMe2CH2)2-7,8-C2B9H11 has been prepared, structurally characterized, and employed in the preparation of the novel mono- and trimetallic titanium complexes [eta5:eta1-(NMe2CH2)C2B9H9CH2NMe2]Ti(NMe2)2 and [eta5:eta1-[(NMe2CH2)C2B9H9CH2NMe2]Ti(NMe2)]2-mu3-O-Ti(NMe2)2.  相似文献   
107.
The Pim (proviral integration site for Moloney murine leukemia virus) proteins compose a serine threonine kinase family whose members regulate cell proliferation, migration and cell survival. However, whether Pim kinases participate in innate immune responses is unclear. Here, we show for the first time that Pim1 plays an essential role in the production of interferon (IFN)-β by macrophages after their Toll-like receptor (TLR) pathway is activated by pathogen-associated molecular patterns (PAMPs). Specifically, Pim1 was quickly upregulated in an NF-κB-dependent manner after TLR stimulation with PAMPs. Pim1 deficiency reduced TLR3- or TLR4-stimulated IFN-β and IFN-stimulated gene (ISG) expression but not proinflammatory cytokine expression in macrophages. Mechanistically, Pim1 specifically upregulates IRF3 phosphorylation and nuclear translocation. However, this role is not dependent on Pim1 kinase activity. Rather, Pim1 appears to promote IRF3 phosphorylation by enhancing the formation of IFN-β signaling complexes composed of TRIF, TRAF3, TBK1, and IRF3. Poly (I:C)-treated Pim1−/− mice produced less serum IFN-β and were less likely to survive than wild-type mice. These findings show for the first time that Pim1 participates in TLR-mediated IFN-β production, thus revealing a novel target for controlling antiviral innate immune responses.Subject terms: Toll-like receptors, Phagocytes  相似文献   
108.
The pH-selective interaction between the immunoglobulin G (IgG) fragment crystallizable region (Fc region) and the neonatal Fc receptor (FcRn) is critical for prolonging the circulating half-lives of IgG molecules through intracellular trafficking and recycling. By using directed evolution, we successfully identified Fc mutations that improve the pH-dependent binding of human FcRn and prolong the serum persistence of a model IgG antibody and an Fc-fusion protein. Strikingly, trastuzumab-PFc29 and aflibercept-PFc29, a model therapeutic IgG antibody and an Fc-fusion protein, respectively, when combined with our engineered Fc (Q311R/M428L), both exhibited significantly higher serum half-lives in human FcRn transgenic mice than their counterparts with wild-type Fc. Moreover, in a cynomolgus monkey model, trastuzumab-PFc29 displayed a superior pharmacokinetic profile to that of both trastuzumab-YTE and trastuzumab-LS, which contain the well-validated serum half-life extension Fcs YTE (M252Y/S254T/T256E) and LS (M428L/N434S), respectively. Furthermore, the introduction of two identified mutations of PFc29 (Q311R/M428L) into the model antibodies enhanced both complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity activity, which are triggered by the association between IgG Fc and Fc binding ligands and are critical for clearing cancer cells. In addition, the effector functions could be turned off by combining the two mutations of PFc29 with effector function-silencing mutations, but the antibodies maintained their excellent pH-dependent human FcRn binding profile. We expect our Fc variants to be an excellent tool for enhancing the pharmacokinetic profiles and potencies of various therapeutic antibodies and Fc-fusion proteins.Subject terms: Antibody therapy, Molecularly targeted therapy, Drug development  相似文献   
109.
A facile synthetic strategy towards conformationally stable chiral chromophores based on dimeric porphyrinoids has been established. A peculiar class of face-to-face intramolecularly interlocked corrole dimers were formed by the oxidative C−C coupling linked at the inner carbon sites upon simple treatment of copper(II) ions. Their intrinsic electronic structures were modulated by the peripheral corrole ring annulations, which lead to distinct optical properties and redox profiles. The stereogenic carbon centers implemented in the confused corrole skeleton provided a rationale for designing novel chiral materials.  相似文献   
110.
Here, we report the synthesis of a truncated cone-shaped triangular porphyrinic macrocycle, P3L3 , via a single step imine condensation of a cis-diaminophenylporphyrin and a bent dialdehyde-based linker as building units. X-ray diffraction analysis reveals that the truncated cone-shaped P3L3 molecules are stacked on top of each other by ππ and CH⋯π interactions, to form 1.7 nm wide hollow columns in the solid state. The formation of the triangular macrocycle is corroborated by quantum chemical calculations. The permanent porosity of the P3L3 crystals is demonstrated by several gas sorption experiments and powder X-ray diffraction analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号