首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   9篇
化学   181篇
力学   3篇
数学   34篇
物理学   18篇
  2024年   1篇
  2022年   4篇
  2021年   5篇
  2020年   8篇
  2019年   7篇
  2018年   6篇
  2017年   4篇
  2016年   12篇
  2015年   7篇
  2014年   7篇
  2013年   12篇
  2012年   20篇
  2011年   20篇
  2010年   10篇
  2009年   8篇
  2008年   10篇
  2007年   18篇
  2006年   18篇
  2005年   11篇
  2004年   14篇
  2003年   7篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1980年   1篇
  1935年   1篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
1.
[reaction: see text] A new method for the synthesis of beta-cyclodextrin-based cluster mannosides by application of the Sonogashira cross-coupling reaction is described. The method allows for the persubstitution of the beta-cyclodextrin at either 2- and 3-positions to give two types of heptavalent clusters, at both 2- and 6-positions to give clusters with 14 mannopyranoside units and at 2-, 3-, and 6-positions to obtain clusters with 21 mannopyranoside ligands.  相似文献   
2.
In the present study, carbon-coated lithium iron phosphate (LiFePO4/C) is prepared directly by a polyol-assisted pyro-synthesis performed under reaction times of a few seconds in open-air conditions. The polyol solvent, tetraethylene glycol (TTEG), acts as a low-cost fuel to facilitate combustion and the released exothermic energy promotes the nucleation and growth processes of the olivine nanoparticles. In addition, phosphoric acid (used as the phosphorous source) acts as a catalyst to accelerate polyol carbonization. The structure analysis of the as-prepared LiFePO4/C using X-ray, neutron diffraction and 7Li NMR studies suggested the efficacy of the rapid technique to produce highly crystalline phase-pure olivine nanocrystals. The electron microscopy and particle-size distribution studies revealed that the average particle diameters lie below 100 nm and confirmed the presence of a surface carbon layer of 2–3 nm thickness. The thermal and elemental studies indicated that the carbon content in the sample was approximately 5 %. The prepared LiFePO4/C cathode delivered capacities of 162 mA h g-1 at 0.1 °C rates with impressive capacity retention for extended cycling. The polyol-assisted pyro-synthesis, which evades the use of external energy sources, is not only a straightforward, simple and timely approach but also offers opportunities for large-scale LiFePO4/C production.  相似文献   
3.
A nanostructured Mn3O4/C electrode was prepared by a one‐step polyol‐assisted pyro‐synthesis without any post‐heat treatments. The as‐prepared Mn3O4/C revealed nanostructured morphology comprised of secondary aggregates formed from carbon‐coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn3O4/C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g?1 at a current density of 33 mA g?1, good capacity retentions (1141 mAh g?1 with 100 % Coulombic efficiencies at the 100th cycle), and rate capabilities (307 and 202 mAh g?1 at 528 and 1056 mA g?1, respectively) when tested as an anode for lithium‐ion battery applications.  相似文献   
4.
5.
6.
Data are presented on the kinetics, electrokinetics, and surface free energy in the process of adsorption of polyethyleneimine (PEI) as a pretreatment of Leacril, later dyed with the reactive dye Remazol Brilliant Blue R (RBBR). The electrokinetic potential of Leacril is negative, due probably to the presence of sulfonate and sulfate end-group onto Leacril fibers. The zeta potential of Leacril decreases in absolute value as a function of NaCl concentration in solution, probably because of compression of the electrical double layer. The zeta potential of Leacril as a function of the concentration of PEI in solution increases because of the adsorption of PEI ions through chemical reaction between the sulfonate end-groups of Leacril and the amine groups of PEI. The adsorption kinetics shows that an increase in the concentration of PEI, brings about an increase in the amount of RBBR adsorbed onto the fiber. This may be an indication of the chemical reaction between the reactive groups of the polyelectrolyte and dye molecules. The behavior of the surface free energy of the systems involved confirms these conclusions.  相似文献   
7.
8.
Different matrices and sample-matrix preparation procedures have been tested in order to study their influence on the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra of intact glycoproteins, which present different degrees of glycosylation (human transferrin; bovine fetuin; bovine alpha(1)-acid-glycoprotein; recombinant human erythropoietin; and the novel erythropoiesis stimulating protein). Using sinapinic acid (SA) and the fast evaporation method, the studied glycoproteins became susceptible to fragmentation at any laser intensity, suggesting that this 'hot' matrix is unsuitable for a reliable molecular mass determination of glycosylated compounds. In contrast, 2,5-dihydroxybenzoic acid (DHB) and 6-aza-2-thiothymine (ATT), with an adequate sample-matrix preparation, provided improved results. Samples containing DHB after crystallization by vacuum drying demonstrated the best performance because the labile functional groups from the glycoforms were apparently fragmented to a lower extent. The average molecular masses obtained using this methodology were in all cases a better estimation than those values reported in the literature. The results were reproducible, and sensitivity was similar to that obtained with SA and the fast evaporation method. These excellent results suggest that this MALDI-TOF-MS methodology could be useful for an improved determination of the average molecular mass values of microheterogeneous compounds such as glycoproteins, glycosylated compounds or, in general, molecular mass values of molecules with similar labile functional groups.  相似文献   
9.
Magnetic hyperthermia (MH) shows great potential in clinical applications because of its very localized action and minimal side effects. Because of their high saturation magnetization values, reduced forms of iron are promising candidates for MH. However, they must be protected in order to overcome their toxicity and instability (i. e., oxidation) under biological conditions. In this work, a novel methodology for the protection of iron nanoparticles through confinement within graphitic carbon layers after thermal treatment of preformed nanoparticles supported on carbon is reported. We demonstrate that the size and composition of the nascent confined iron nanoparticles, as well as the thickness of their protective carbon layer can be controlled by selecting the nature of the carbon support. Our findings reveal that a higher nanoparticle–carbon interaction, mediated by the presence of oxygen-containing groups, induces the formation of small and well-protected α-Fe-based nanoparticles that exhibit promising results towards MH based on their enhanced specific absorption rate values.  相似文献   
10.
Summary The absorption spectrum of the nitrate radical (NO3) in aqueous solution and the kinetic of the reactions with Cl and OH have been determined using laser-spectrometric techniques. The maximum absorption was found at 635 nm with a decadic absorption coefficient of =(530±110) l/mol·cm. At 298 K rate constants of k1=(1.0±0.2)·107 l/mol·s for the reaction with chloride and of k2=(8.2±0.9)·107 l/mol·s for the reaction with hydroxide were obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号