首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6318篇
  免费   1080篇
  国内免费   674篇
化学   4195篇
晶体学   59篇
力学   315篇
综合类   43篇
数学   815篇
物理学   2645篇
  2024年   16篇
  2023年   140篇
  2022年   187篇
  2021年   239篇
  2020年   270篇
  2019年   230篇
  2018年   202篇
  2017年   196篇
  2016年   317篇
  2015年   279篇
  2014年   349篇
  2013年   423篇
  2012年   542篇
  2011年   597篇
  2010年   362篇
  2009年   364篇
  2008年   395篇
  2007年   349篇
  2006年   348篇
  2005年   293篇
  2004年   213篇
  2003年   185篇
  2002年   212篇
  2001年   166篇
  2000年   139篇
  1999年   182篇
  1998年   145篇
  1997年   117篇
  1996年   112篇
  1995年   83篇
  1994年   58篇
  1993年   59篇
  1992年   55篇
  1991年   61篇
  1990年   33篇
  1989年   31篇
  1988年   25篇
  1987年   17篇
  1986年   27篇
  1985年   18篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   3篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1957年   1篇
排序方式: 共有8072条查询结果,搜索用时 187 毫秒
71.
A procedure for the Raman spectra calculation of vitreous and molten silicates was presented in this paper. It includes molecular dynamics MD simulation for the generation of equilibrium configurations, Wilson's GF matrix method for the calculations of eigenfrequencies and corresponding vectors, electro-optical parameters method (EOPM) for the Raman intensity calculations, and the bond polarizability model (BPM) for the determination of polarizability and polarizability derivative. One of the most important characteristics of this procedure is the achievement of the partial Raman spectra of five tetrahedral units, as well as the total spectral envelope. In this paper, the calculation was carried out for the vitreous and molten calcium silicates with different compositions and at various temperatures. It is worthwhile to note that the calculation is based on statistical configurations distribution in the space and so it is not needed to artificially adjust the full width at half maximum (FWHM) of spectra. It was also tested through the good agreement of the calculated spectra with the experimental, including some regularity of spectral properties. According to the calculation, the symmetrical stretching of whole tetrahedral units, to which the stretching of Si-O(nb) bond gives the main contribution to intensity, is proven to be the dominance in the high-frequency range (800-1200 cm(-1)) and the symmetrical bending of Si-O(b)-Si, to which the stretching of Si-O(b) bond exhibits the main contribution, is the dominance in the medium-frequency range (400-700 cm(-1)). As the first theoretical results, the Raman scattering coefficient of each Q(i) was found little change along with the variation of composition and temperature.  相似文献   
72.
Most alkyl phenyl sulfones are readily alpha-chlorinated with CCl(4) and alpha-brominated with CBrCl3 in KOH-t-BuOH via radical-anion radical pair (RARP) reactions. While isopropyl mesityl sulfone (4) is easily alpha-chlorinated with CCl(4), it was completely recovered when treated with the more reactive CBrCl3. Subsequent investigations showed the latter result to be due to the poor acidity of 4 together with the rapid depletion of CBrCl3 and KOH by their reaction with each other, and led to a variety of other important results. 4-Hydroxyphenyl isopropyl sulfone (6) is unreactive with either CCl4 or CBrCl3 in KOH-t-BuOH, its phenoxide anion strongly reducing the electronegativity of the sulfonyl group, thereby inhibiting alpha-anion formation. This effect is reversed by the electron-withdrawing influence of two alpha-phenyls, so that benzhydryl 4-hydroxyphenyl sulfone (8) is readily alpha-halogenated in KOH-t-BuOH with CCl4 or CBrCl3. On further contact with KOH-t-BuOH the alpha-halogenated sulfones from 8 are decomposed into benzophenone and phenol. While the alpha-halogenated derivatives of 4-methoxyphenyl benzhydryl sulfone (9) are stable to base, they are decomposed even under mildly acidic conditions into 4-methoxyphenyl 4-methoxybenzenethiolsulfonate (9c), phenol, and benzophenone. Mono-alpha-halogenation of benzyl phenyl sulfone (10) enhances the rate of the subsequent halogenation, so that alpha,alpha-dihalogenation is attained while much substrate is still present and the mono-alpha-halogenated product is not detected. The ease of reductive debromination of alpha-bromo sulfones with Cl3C- was correlated with the stability of the formed alpha-anions, explaining the success with alpha-bromobenzylic sulfones but failure with alpha-bromoalkyl sulfones. In the presence of air and the absence of competing halogenation, formation of the alpha-anions of alkyl aryl sulfones is quickly accompanied by oxidative cleavage by atmospheric O2, leading to the formation of arenesulfonyl alcohols, arenesulfonyl halides, and haloarenes.  相似文献   
73.
Recently discovered catalytic reactions with ruthenium and lanthanide metal complexes have extended the scope of 1-alkynes as useful reagents. The specific formation of aryl-substituted (Z)-1,3-enzymes via the dimerization of HC(triple bond) CR(1) (R(1) = aryl) has been attained using dimeric lanthanide complexes, the catalytic activity of which appears to be unaffected by time. The dimerization of HC(triple bond) CR(2) (R(2) = t-Bu, SiMe(3)) catalyzed by Ru(cod)(cot)/PR(3) or RuH(2)(PPh(3))(3) produces a good yield of butatrienes (Z)R(2)CH=C=C=CHR(2) with a high degree of selectivity. Under certain conditions, HC(triple bond) C=SiMe(3) dimerizes to yield exclusively (Z)-M(3)Si-C(triple bond) C-CH=CH-SiMe(3). The hydration of HC(triple bond)CR(3) (R(3) = alkyl, aryl) catalyzed by RuCl(2)/PR'(3) or CpRuCl(PR"(3))(2) has realized the first example of anti-Markovnikov regioselectivity in an addition reaction of water that produces aldehydes R(3)CH(2)bond;CHO. The application of this reaction to propargylic alcohols has lead to their formal isomerization to alpha,beta-unsaturated aldehydes. In contrast, the addition of amines R(4)bond;NH(2) (R(4) = aryl) to HCtbond;CR(5) (R(5) = alkyl, aryl) conforms to Markovnikov's rule to produce ketimines R(5)bond;(C=NR(4))bond;CH(3) when catalyzed by a Ru(3)(CO)(12)/additive. Since the reaction can be performed in air without the need for any solvents, it enables the practical synthesis of aromatic ketimines, which are difficult to prepare by conventional methods. The synthesis of indoles using deactivated anilines is one practical application of this reaction. The mechanisms of some of these reactions have been analyzed in detail with the aid of theoretical calculations.  相似文献   
74.
The mechanism of the SO2 + HO2 reaction was studied theoretically for the first time. Three product channels were revealed, namely, O2 + HOSO, O2 + HSO2, and OH + SO3. The O2 + HOSO channel dominates the reaction under combustion conditions. A five-member-ring complex [SO2–HO2] exists at the entrance of the reaction. The structure and binding energy (De and D0) of the SO2–HO2 complex have been calculated. In view of D0 = 21.2 ± 2.0 kJ mol−1, the SO2–HO2 complex should be stable at low temperature. The infrared spectra and frequency shifts were calculated for both SO2–HO2 and SO2–DO2, and compared with the available experimental data.  相似文献   
75.
Despite the versatility of amphoteric molecules, stable and easily accessible ones are still limitedly known. As a result, the discovery of new amphoteric reactivity remains highly desirable. Herein we introduce 3-aminooxetanes as a new family of stable and readily available 1,3-amphoteric molecules and systematically demonstrated their amphoteric reactivity toward polarized π-systems in a diverse range of intermolecular [3 + 2] annulations. These reactions not only enrich the reactivity of oxetanes, but also provide convergent access to valuable heterocycles.

Despite the versatility of amphoteric molecules, stable and easily accessible ones are still limitedly known.

Amphoteric molecules, which bear both nucleophilic and electrophilic sites with orthogonal reactivity, represent an attractive platform for the development of chemoselective transformations.1 For example, isocyanides are well-established 1,1-amphoteric molecules, with the terminal carbon being both nucleophilic and electrophilic, and this feature has enabled their exceptional reactivity in numerous multi-component reactions.2 In the past few decades, substantial effort has been devoted to the search for new amphoteric molecules.1–5 Among them, 1,3-amphoteric molecules proved to be versatile. The Yudin and Beauchemin laboratories have independently developed two types of such molecules, α-aziridine aldehydes and amino isocyanates, respectively.4,5 With an electrophilic carbon and a nucleophilic nitrogen in relative 1,3-positions, these molecules are particularly useful for the chemoselective synthesis of heterocycles with high bond-forming efficiency without protective groups (Fig. 1). However, such elegant amphoteric systems still remain scarce. Therefore, the development of new stable amphoteric molecules with easy access remains highly desirable.Open in a separate windowFig. 1Representative [1,3]-amphoteric molecules versus 3-aminooxetanes.In this context, herein we introduce 3-aminooxetanes as a new type of 1,3-amphoteric molecules and systematically demonstrate their reactivity in a range of [3 + 2] annulations, providing rapid access to diverse heterocycles. Notably, 3-aminooxetanes are bench-stable and either commercially available or easily accessible. However, their amphoteric reactivity has not been appreciated previously.Oxetane is a useful functional group in both drug discovery and organic synthesis.6–9 Owing to the ring strain, it is prone to nucleophilic ring-opening, in which it serves as an electrophile (Scheme 1A).6–8 We envisioned that, if a nucleophilic group is installed in the 3-position (e.g., amino group), such molecules should exhibit 1,3-amphoteric reactivity due to the presence of both nucleophilic and electrophilic sites (Scheme 1B). Importantly, the 1,3-relative position is crucial for inhibiting self-destructive intra- or intermolecular ring-opening (i.e. the 3-nucleophilic site attack on oxetane itself) due to high barriers. Thus, such orthogonality is beneficial to their stability. In contrast, the nucleophilic site is expected to react with an external polarized π bond (e.g., X = Y, Scheme 1B), which enables a better-positioned nucleophile (Y) to attack the oxetane and cyclize. Thus, a formal [3 + 2] annulation should be expected. Unlike the well-known SN2 reactivity of oxetanes with simple bond formation, this amphoteric reactivity would greatly enrich the chemistry of oxetanes with multiple bond formations and provide expedient access to various heterocycles. In contrast to the conventional approaches that require presynthesis of advanced intermediates (e.g., intramolecular ring-opening),8 the exploitation of such amphoteric reactivity in an intermolecular convergent manner from simple substrates would be more practically useful. Moreover, more activation modes could be envisioned in addition to oxetane activation. In 2015, Kleij and coworkers reported an example of cyclization between 3-aminooxetane and CO2 in 55% yield, which provided a pioneering precedent.10 However, a systematic study to fully reveal such amphoteric reactivity in a broad context remains unknown in the literature.Open in a separate windowScheme 1Typical oxetane reactivity and the new amphoteric reactivity.To test our hypothesis, we began with the commercially available 3-aminooxetanes 1a and 1b as the model substrates. Phenyl thioisocyanate 2a and CS2 were initially employed as reaction partners, as they both have a polarized C Created by potrace 1.16, written by Peter Selinger 2001-2019 S bond as well as a relatively strong sulfur nucleophilic motif. Moreover, the resulting desired products, iminothiazolidines and mercaptothiazolidines, are both heterocycles with important biological applications (Fig. 2).11 To our delight, simple mixing these two types of reactants in DCM resulted in spontaneous reactions at room temperature without any catalyst. The corresponding [3 + 2] annulation products iminothiazolidine 3a and mercaptothiazolidine 4a were both formed with excellent efficiency (Scheme 2). It is worth mentioning that catalyst-free ring-opening of an oxetane ring is rarely known, particularly for intermolecular reactions.6–9 In this case, the high efficiency is likely attributed to the suitable choice and perfect position of the in situ generated sulfur nucleophile.Open in a separate windowFig. 2Selected bioactive molecules containing iminothiazolidine and mercaptothiazolidine motifs.Open in a separate windowScheme 2Initial results between 3-aminooxetanes and thiocarbonyl compounds.The catalyst-free annulation protocol is general with respect to various 3-aminooxetanes and isothiocyanates. A range of iminothiazolidines and mercaptothiazolidines were synthesized with high efficiency under mild conditions (Scheme 3). Many of them were obtained in quantitative yield. Quaternary carbon centers could also be generated from 3-substituted 3-aminooxetanes (e.g., 3j). The structure of product 3b was unambiguously confirmed by X-ray crystallography.Open in a separate windowScheme 3Formal [3 + 2] annulation with isothiocyanates and CS2. Reaction conditions: 1 (0.3–0.4 mmol), 2 (1.1 equiv.) or CS2 (1.5 equiv.), DCM (2 mL), RT, 3 h for 3 and 36 h for 4. Yields are for the isolated products.With the initial success of thiocarbonyl partners, we next turned our attention to isocyanates, in which the carbonyl group serves as the [3 + 2] annulation motif. Compared with sulfur as the nucleophilic site in the above cases, the oxygen atom is less nucleophilic. As expected, initial tests of the reactivity by mixing 1b and 5a resulted in no desired annulation product 6a in the absence of a catalyst (Table 1, entry 1). Next, Brønsted acids, including TsOH and the super acid HNTf2, were examined as catalysts, but with no success (entries 2 and 3). We then resorted to various Lewis acids, particularly those oxophilic ones, in hope of activating the oxetane unit. Unfortunately, many of them still remained ineffective (e.g., ZnCl2, AuCl, and FeCl3). However, to our delight, further screening of stronger Lewis acids helped identify Sc(OTf)3, Zn(OTf)2, and In(OTf)3 to be effective at room temperature, leading to the desired iminooxazolidine product 6a in good yield (entries 7–9). Its structure was confirmed by X-ray crystallography. Nevertheless, aiming to search for a cheaper catalyst, we continued to optimize this reaction at a higher temperature using previous ineffective catalysts. Indeed, FeCl3 was found to be effective at 80 °C (61% yield, entry 10), while Brønsted acid TsOH remained ineffective at this temperature (entry 11). Notably, decreasing the loading of FeCl3 to 1 mol% led to a higher yield (89% yield, entry 12). However, further decreasing to 0.5 mol% resulted in slightly diminished efficiency (entry 13).Reaction conditions for annulation with isocyanatesa
EntryCatalystYieldb (%)
10
2TsOH·H2O0
3HNTf20
4ZnCl20
5AuCl0
6FeCl30
7Sc(OTf)374
8Zn(OTf)278
9In(OTf)390
10FeCl3c61
11TsOH·H2Oc0
12FeCl3c (1 mol%)89(84)d
13FeCl3c (0.5 mol%)85
Open in a separate windowaReaction scale: 1b (0.1 mmol), 5a (0.1 mmol), catalyst (10 mol%), toluene (1 mL).bYield based on analysis of the 1H NMR spectra of the crude reaction mixture using trichloroethylene as an internal reference. For all the entries, the urea product from simple amine addition to isocyanate 5a accounts for the mass balance.cRun at 80 °C.dIsolated yield.While there are multiple effective catalysts, FeCl3 was selected for the scope study in view of its low price. Various substituted 3-aminooxetanes and isocyanates were subjected to this annulation protocol (Scheme 4). The corresponding iminooxazolidine products were all obtained in good to excellent yields. Isocyanates containing an electron-donating or electron-withdrawing group were both suitable reaction partners. Remarkably, a 1.5 mmol scale reaction of 6a also worked efficiently.Open in a separate windowScheme 4Formal [3 + 2] annulation between 3-aminooxetanes and isocyanates. Reaction scale: 1 (0.3 mmol), 5 (0.3 mmol), FeCl3 (1 mol%), toluene (2 mL).Although (thio)isocyanates and CS2 have been successfully utilized in the formal [3 + 2] annulation with 3-aminooxetanes, these partners are relatively reactive. We were curious about whether the C Created by potrace 1.16, written by Peter Selinger 2001-2019 O bond in relatively inert molecules could react in a similar manner. For example, the C Created by potrace 1.16, written by Peter Selinger 2001-2019 O bond in CO2 is both thermodynamically and kinetically inert relative to typical organic carbonyl groups. However, as a cheap, abundant and green one-carbon source, CO2 has been a subject of persistent investigations owing to its versatility in various transformations leading to valuable materials.12 Specifically, if CO2 could be employed as a partner for the [3 + 2] annulation with 3-aminooxetanes, it would represent an attractive synthesis of oxazolidinones, a well-known heterocycle with applications in both organic synthesis and medicinal chemistry.13 In this context, we next studied the possibility of utilizing CO2 in our annulation.As expected, the reaction between 1b and CO2 at 1 atmospheric pressure did not proceed without a catalyst (Table 2, entry 1). Next, we examined representative Lewis acids, such as Sc(OTf)3, In(OTf)3 and FeCl3. Among them, Sc(OTf)3 exhibited the highest catalytic activity at room temperature (22% yield, entry 2). The reaction efficiency could be improved at 80 °C (65% yield, entry 6), but no further improvement could be made at a higher temperature or with other solvents. Next, we resorted to organic nitrogen bases, as they were known as effective activators of CO2.14 While Et3N and DABCO were completely ineffective for the reaction in MeCN at 80 °C, fortunately, TMG, TBD, and DBU were competent for the desired process (entries 7–11). Among them, DBU exhibited the best performance, leading to the desired product 7a in 89% yield (entry 11). It is worth noting that the polar solvent MeCN was found to be crucial for the base-catalyzed reactivity. Less polar solvents, such as toluene, DCE or THF, completely shut down the reaction. We believe that effective stabilization of certain polar intermediates involved here is critically beneficial to decreasing the reaction barrier. Finally, unlike the previous Lewis acid-catalyzed annulation with isocyanates, this base-catalyzed [3 + 2] annulation with CO2 proceeds via a different activation mode (i.e., to activate CO2 rather than oxetane). We believe that expansion of possible activation modes in this type of amphoteric reactivity will enrich the chemistry of oxetanes.Reaction conditions for annulation with CO2a
EntryCatalyst T Conv. (%)Yield (%)
1RT00
2Sc(OTf)3RT4822
3In(OTf)3RT339
4Zn(OTf)2RT70
5Sc(OTf)360 °C10061
6Sc(OTf)380 °C10065
7Et3N80 °C00
8DABCO80 °C50
9TMG80 °C7254
10TBD80 °C10088
11DBU80 °C10089
Open in a separate windowaReaction scale: 1b (0.1 mmol), CO2 (1 atm), solvent (0.5 mL). Yields based on analysis of the 1H NMR spectra of the crude reaction mixture using CH2Br2 as an internal standard.We next examined the scope of this CO2-fixation process. Unfortunately, at a larger scale (0.5 mmol), the same condition (entry 11, Table 2) could not lead to complete conversion within 12 h. Therefore, further optimization aiming to accelerate the reaction was performed. Indeed, a higher concentration (1.0 M) resulted in a higher rate without affecting the yield. As shown in Scheme 5, a wide variety of 3-aminooxetanes were smoothly converted to the corresponding oxazolidinones in high yields. Both electron-donating and electron-withdrawing substituents on the N-benzyl group did not affect the efficiency. Heterocycle-based N-benzyl or N-allylic substituents are all suitable substrates. However, for regular alkyl substituents, such as homobenzyl (7h) or n-butyl (7j), the stronger base catalyst TBD was needed to achieve good efficiency. Furthermore, this reaction can tolerate steric hindrance in the 3-position of the oxetane (7k), where a quaternary carbon center could be incorporated. However, increasing the size of the N-substituent, such as the secondary alkyl groups in 7i and 7l, did influence the reactivity, thus requiring a higher temperature (100 °C). This process exhibited good compatibility with diverse functional groups, such as ethers, pyridines, aryl halides, olefins, silyl-protected alcohols, and phthalimides. Finally, this protocol is also capable of generating various oxazolidinones embedded in a different structural context, such as chiral oxazaolidinone 7l, bis(oxazolidinone) 7m, and polyheterocycle-fused oxazolidinone 7o.Open in a separate windowScheme 5Formal [3 + 2] annulation between 3-aminooxetanes and CO2. aReaction scale: 1 (0.5 mmol), CO2 (1 atm), DBU (10 mol%), MeCN (0.5 mL). Isolated yield. bRun with TBD as the catalyst. cRun with DMF as solvent at 100 °C.In summary, 3-aminooxetanes have been systematically demonstrated, for the first time, as versatile 1,3-amphoteric molecules. They are a new addition to the limited family of amphoteric molecules. Though previously unappreciated, these molecules exhibited various advantages over the related known 1,3-amphotric molecules (e.g., α-aziridine aldehydes and amino isocyanates), including easy access and extraordinary stability. The perfect position of the nucleophilic nitrogen together with the orthogonal electrophilic carbon allowed them to participate in a diverse range of intermolecular formal [3 + 2] annulations with polarized π-systems, leading to rapid access to various valuable nitrogen heterocycles. Different types of polarized double bonds, from reactive (thio)isocyanates to inert CO2, all participated efficiently in these highly selective annulations with or without a suitable catalyst. Furthermore, the involvement of more functional groups in such amphoteric reactivity allowed manifold activation modes, thereby greatly enriching the reactivity of the already versatile oxetane unit to a new dimension. These reactions, proceeding in an intermolecular convergent manner from readily available substrates, provide expedient access to various valuable nitrogen heterocycles, thus being complementary to those traditional methods that either required multiple steps or less available substrates. More studies on the 1,3-amphoteric reactivity of 3-oxetanes, particularly those with other partners as well as their asymmetric variants, are ongoing in our laboratory.  相似文献   
76.
Hexagonal ZnO group whiskers synthesized from Zn(NH3)42+ precursor at 145°C in a structure-directing template solvent (2.5% v/v alcohol) show strong photoluminescence at 409 and 420 nm. FE-SEM and TEM observation reveals that the ZnO group whiskers consist of uniform pencil-like whiskers with the diameter of around 1.5 μm and the length of up to 6 μm.  相似文献   
77.
侯经国  王亚丽 《分析化学》1998,26(3):298-302
在自制的硅基纤维素-三(3,5-二甲基苯基氨基甲酸酯)高效液相色谱手性固定相上(HPLC-CSP),优化了1-(6'-甲氧基萘)乙醇氢酯基化反应产物-萘普生甲酯手性分离的条件,测定了相应的一系列不对称氢酯基化反应产物的对映体过剩值(e.e.值)。结果表明,在CDMPC-CSP手性柱上用HPLC测定此类不对称催化反应的光学产率,评价催化剂体系的手性选择是一种非常理想的方法。  相似文献   
78.
以双[对-酰氯苯基]二甲基硅烷和酚酞、四溴酚酞以及双酚A为原料,合成了三种主链含硅聚芳酯,并对聚合物相关的物理性质进行了表征,制成了均质透明的薄膜.采用低真空法测定这些聚合物对H2、O2、N2、CO2、CH4的气体透过速率,并计算出气体透过系数、扩散系数、溶解系数、分离系数.从气体透过性能与聚合物分子结构关系的角度,按照气体透过的溶解-扩散机制,对聚合物的气体透过性能进行了研究,而且着重讨论了聚合物的堆积密度对气体扩散系数的影响,以及聚合物主链中极性链段的百分含量对气体溶解系数和溶解选择性的影响。  相似文献   
79.
人体体液中游离脂肪酸谱的定量测定   总被引:2,自引:1,他引:2  
刘学志  候卫 《分析化学》1990,18(8):705-709
  相似文献   
80.
Inorganic electrides are a novel kind of ionic compounds in which the anions are electrons confined in a complex array of cavities or channels and the cations are nanoscale arrays of alkali metal ions that provide charge balance. In electrides the donated electron behaves like a low-density correlated electron gas, whereby the dimensionality of the electron gas and its electronic and magnetic properties are determined by the topology of the cavities in the host matrix. Unlike traditional electrides, in which alkali cations are encapsulated within an organic cage, inorganic electrides are thermally stable. The current inorganic electrides based on alkali metal loaded zeolites can be designed as useful reduced-dimensionality materials. Inorganic electrides are powerful reducing agents, and they are able to reduce small aromatic molecules to the radical anions within the channels of the zeolite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号