首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10672篇
  免费   2003篇
  国内免费   1278篇
化学   7748篇
晶体学   66篇
力学   657篇
综合类   77篇
数学   1078篇
物理学   4327篇
  2024年   45篇
  2023年   278篇
  2022年   386篇
  2021年   400篇
  2020年   486篇
  2019年   429篇
  2018年   358篇
  2017年   306篇
  2016年   527篇
  2015年   470篇
  2014年   566篇
  2013年   810篇
  2012年   995篇
  2011年   982篇
  2010年   649篇
  2009年   644篇
  2008年   719篇
  2007年   629篇
  2006年   557篇
  2005年   480篇
  2004年   370篇
  2003年   331篇
  2002年   273篇
  2001年   220篇
  2000年   215篇
  1999年   254篇
  1998年   214篇
  1997年   194篇
  1996年   207篇
  1995年   175篇
  1994年   142篇
  1993年   124篇
  1992年   103篇
  1991年   74篇
  1990年   84篇
  1989年   56篇
  1988年   48篇
  1987年   44篇
  1986年   29篇
  1985年   28篇
  1984年   14篇
  1983年   9篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1979年   2篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
绿色环保化学机械抛光液的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
原子级加工制造是实现半导体晶圆原子尺度超光滑表面的有效途径.作为大尺寸高精密功能材料的原子级表面制造的重要加工手段之一,化学机械抛光(chemical mechanical polishing,CMP)凭借化学腐蚀和机械磨削的耦合协同作用,成为实现先进材料或器件超光滑无损伤表面平坦化加工的关键技术,在航空、航天、微电子等众多领域得到了广泛应用.然而,为了实现原子层级超滑表面的制备,CMP工艺中常采用的化学腐蚀和机械磨削方法需要使用具有强烈腐蚀性和高毒性的危险化学品,对生态系统产生了不可逆转的危害.因此,本文以绿色环保高性能抛光液作为对象,对加工原子量级表面所采用的化学添加剂进行分类总结,详尽分析在CMP过程中化学添加剂对材料表面性质调制的作用机理,为在原子级尺度下改善表面性质提供可参考的依据.最后,提出了CMP抛光液在原子级加工研究中面临的挑战,并对未来抛光液发展方向作出了展望,这对原子尺度表面精度的进一步提升具有深远的现实意义.  相似文献   
982.
Two metal–organic frameworks, [Co2(L)(H2O)2(4,4′-bipy)]·3CH3CN (1) and [Mn2(L)(1,10-phen)(H2O)]·H2O (2) (H4L = 5-[bis(4-carboxybenzyl)-amino]isophthalic acid; 4,4′-bipy = 4,4′-bipyridine, 1,10-phen = 1,10-phenanthroline), with two different N-donor ligands have been synthesized. The structures of both MOFs were determined using single-crystal X-ray diffraction technique. MOF 1 shows 3D uncommon (4,6,6)-c net with (4.53.62)2(57.66.82)(42.54.66.72.8) topology while in the case of 2, only L4? ligands link Mn(II) ions into a 2D layer structure with chelating 1,10-phen ligand. The results demonstrate that variation in the N-donor ligands plays a pivotal role in deciding the framework of the two MOFs. Both MOFs have been exploited as photocatalyst materials for the degradation of MV. The photocatalysis results indicate that the two MOFs are stable and are prospective candidates for degradation of methyl violet under UV light irradiation. Additionally, 2 displayed superior photocatalytic activity in comparison to 1. The probable photocatalytic activity mechanism for both 1 and 2 against MV has been proposed using density of states (DOS) calculations.  相似文献   
983.
984.
Isotope dilution mass spectrometry is recognized as a primary method to obtain traceable values in the measurement of substances including trace elements and their organometallic compounds. This paper reports a novel method where isotope dilution high performance liquid chromatography inductively coupled plasma mass spectrometry (ID-HPLC–ICP-MS) was combined with low temperature extraction for the determination of tributyltin (TBT) in tannery wastewater from the leather industry. It has been found that the liquid–liquid extraction at very low temperature is in the favor of extraction of organotin, as the enrichment factor for low temperature (?80 °C) extraction was about 1.3 times higher than for extraction at room temperature (20 °C). The method detection limit of TBT, obtained from the proposed ID-HPLC–ICP-MS procedure after extraction with a sample volume of 7.5 by 2.5 mL of organic phase, was found to be 0.13 ng g?1. When TBT was determined in a range of 10–1000 ng g?1 in tannery wastewater samples, the analyte recoveries were in the range 90.1–107.2% with relative standard deviations of between 2.0 and 7.2%. Finally, the new method of ID-HPLC–ICP-MS combined with low temperature extraction was applied to the determination of TBT in actual tannery wastewater. The TBT contents from three different tanning procedures (chrome tanning, vegetable tanning and aldehyde tanning), expressed as the mean ± the expanded uncertainty (k = 2) were 378.65 ± 20.38, 110.04 ± 5.96 and 690.17 ± 35.31 ng g?1, respectively.  相似文献   
985.
A sensitive and accurate LC method was developed and further validated for the determination of enantiomeric purity of GSK962040. Before separation, a pre-column derivatization procedure was performed. Baseline separation with a resolution higher than 1.9 was accomplished within 15 min using a Chiralpak AD-H (250 × 4.6 mm; particle size 5 μm) column, with n-hexane: 2-propanol (85:15 v/v) as mobile phase at a flow rate of 1 mL min?1. The eluted analytes were subsequently detected with a UV detector at 260 nm. The effects of mobile phase components and temperature on enantiomeric selectivity as well as resolution of enantiomers were thoroughly investigated. The calibration curves were plotted within the concentration range between 4 and 200 μg mL?1 (n = 8), and recoveries between 98.15 and 101.48% were obtained, with relative standard deviation (RSD) lower than 1.42%. The LOD and LOQ for the Boc-GSK962040 were 1.23 and 4.15 μg mL?1 and for its enantiomer were 1.38 and 4.76 μg mL?1, respectively. The developed method was also evaluated and validated by analyzing bulk samples with different enantiomeric ratios of GSK962040. It was demonstrated that the method was accurate, robust and sensitive, and also had practical utilities for real analysis.  相似文献   
986.
The authors report on a surface molecular imprinting strategy for synthesizing magnetic and molecularly imprinted core-shell polymer nanoparticles (MMIPs) with a typical size of 320 nm. The triazophos-imprinted polymer shell on 180-nm magnetite particles (modified with 3-methacryloxypropyl trimethoxysilane) was obtained by radical polymerization of ethylene glycol dimethacrylate in the presence of triazophos, this followed by extractive removal of triazophos. The resulting MMIPs possess large binding capacity, high recognition selectivity, and fast binding kinetics for triazophos. They can be easily separated from a solution by using a magnet. These features result in a convenient and selective solid-phase extraction procedure for triazophos prior to its determination by UV spectrometry or by GC analysis. The method was successfully applied to the extraction and clean-up of triazophos residues in spiked homogenates of vegetables with recoveries in the range of 89.2 ~ 99.0%. The detection limits for triazophos by the UV assay and GC assay are 0.93 nM and 0.32 nM, respectively.
Graphical abstract The core-shell magnetic molecularly imprinted polymer nanoparticles (MMIPs) with a nanoscale triazophos-imprinted polymer shell were prepared by surface imprinting onto the surfaces of 3-methacryloxypropyl trimethoxysilane (MATS) modified Fe3O4 magnetic nanoparticles. They were successfully applied for the extraction and clean-up of ultra trace triazophos residues in spiked homogenates of vegetable samples. MMIPs exhibit the larger binding capacity, faster binding kinetics, higher recognition selectivity, good reusability and stability, and excellent magnetic responses.
  相似文献   
987.
A Re2O7 catalyzed cycloetherification of monoallylic diols is described. The reaction features short reaction time, mild reaction conditions and exclusive E selectivity. A wide range of monoallylic alcohols with alkyl or aryl substituents on olefin smoothly undergo ring closure to deliver corresponding oxa-heterocycles. The reaction is also operationally simple and not sensitive to air and moisture.  相似文献   
988.
解令海  黄维 《高分子科学》2017,35(2):155-170
Molecular bulks are favorable for the thermal and morphological stability in organic wide-bandgap semiconducting polymers with potential applications in both information and energy electronics. In this review, we present our progress in the design of fluorene-based bulky semiconductors with a fractal four-element pattern. Firstly, we established one-pot methods to spirofluorenes, especially spiro[fluorene-9,9′-xanthene](SFX) serving as the next-generation spiro-based semiconductors. Secondly, we observed the supramolecular forces at the bulky groups and discovered the supramolecular steric hindrance(SSH) effect on polymorphisms, nanocrystals as well as device performance. Thus, a synergistically molecular attractor-repulsor theory(SMART) was proposed for the control of nanocrystal morphology, thin film phase and morphology. Thirdly, the third possible type of defects has been identified to generate green band(g-band) emission in widebandgap semiconductors by the introduction of molecular strain design of cyclofluorene. Finally, the first bulky polydiarylfluorene with highly crystalline and β conformation was achieved by an attractor-repulsor design of tadpole-shape monomer, which offered an effective platform to fabricate stable wide-bandgap semiconducting devices. All the discoveries offer the solid basis to break through bottlenecks of organic/polymer wide-bandgap semiconductors by the improvements of overall performances.  相似文献   
989.
谢续明 《高分子科学》2017,35(10):1253-1267
Multi-bond network(MBN) which contains a single network with hierarchical cross-links is a suggested way to fabricate robust hydrogels. In order to reveal the roles of different cross-links with hierarchical bond energy in the MBN, here we fabricate poly(acrylic acid) physical hydrogels with dual bond network composed of ionic cross-links between carboxylFe3+ interactions and hydrogen bonds, and compare these dually cross-linked hydrogels with singly and ternarily cross-linked hydrogels. Simple models are employed to predict the tensile property, and the results confirm that the multi-bond network with hierarchical distribution in the bond energy of cross-links endows hydrogel with effective energy-dissipating mechanism. Moreover, the dually cross-linked MBN gels exhibit excellent mechanical properties(tensile strength up to 500 k Pa, elongation at break ~ 2400%) and complete self-healing after being kept at 50 °C for 48 h. The factors on promoting self-healing are deeply explored and the dynamic multi-bonds are regarded to trigger the self-healing along with the mutual diffusion of long polymer chains and ferric ions.  相似文献   
990.
通过使用季鏻盐与钼酸铵在常温条件下合成了含季鏻阳离子的(n-PentylPh3P)2[Mo6O19]多酸化合物,并通过X-射线单晶衍射、红外光谱、紫外光谱、热重分析和电化学对其进行了表征。产物中的季鏻配体上的氢原子通过与多酸阴离子端基氧原子形成氢键而构筑了一维链状结构,并且季鏻配体上的苯环与相邻季鏻配体上的苯环通过π-π作用形成三维层状结构。此外,对该多酸化合物的光催化降解亚甲基蓝的性能进行了研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号