首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44278篇
  免费   7585篇
  国内免费   5622篇
化学   31636篇
晶体学   641篇
力学   2680篇
综合类   348篇
数学   4637篇
物理学   17543篇
  2024年   164篇
  2023年   843篇
  2022年   1573篇
  2021年   1794篇
  2020年   1790篇
  2019年   1855篇
  2018年   1590篇
  2017年   1526篇
  2016年   2196篇
  2015年   2175篇
  2014年   2693篇
  2013年   3385篇
  2012年   3999篇
  2011年   4016篇
  2010年   2752篇
  2009年   2722篇
  2008年   3017篇
  2007年   2660篇
  2006年   2530篇
  2005年   1988篇
  2004年   1632篇
  2003年   1327篇
  2002年   1422篇
  2001年   1163篇
  2000年   863篇
  1999年   902篇
  1998年   716篇
  1997年   623篇
  1996年   612篇
  1995年   531篇
  1994年   428篇
  1993年   367篇
  1992年   324篇
  1991年   268篇
  1990年   239篇
  1989年   190篇
  1988年   117篇
  1987年   101篇
  1986年   122篇
  1985年   91篇
  1984年   43篇
  1983年   48篇
  1982年   30篇
  1981年   26篇
  1980年   10篇
  1979年   7篇
  1975年   2篇
  1957年   5篇
  1936年   6篇
  1923年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
A method has been developed for the qualitative analysis of paeonol, paeoniflorin and their derivatives in Paeoniae Radix by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS). Gradient elution with acetonitrile-water solvent system was employed in an HPLC-ESI-MS study. The negative-ion ESI mode was suitable for these compounds. The peaks were identified by their mass spectra, UV spectra and fragments of their MS2 spectra. The structures of three unknown compounds are inferred in this paper.  相似文献   
22.
The effects of preparation method, composition, and thermal condition on formation of β‐iPP in isotactic polypropylene/ethylene–propylene rubber (iPP/EPR) blends were studied using modulated differential scanning calorimeter (MDSC), wide angle X‐ray diffraction (WAXD), and phase contrast microscopy (PCM). It was found that the α‐iPP and β‐iPP can simultaneity form in the melt‐blended samples, whereas only α‐iPP exists in the solution‐blended samples. The results show that the formation of β‐iPP in the melt‐blended samples is related to the crystallization temperature and the β‐iPP generally diminishes and finally vanishes when the crystallization temperature moves far from 125 °C. The phenomena that the lower critical temperature of β‐iPP in iPP/EPR obviously increases to 114 °C and the upper critical temperature decreases to 134 °C indicate the narrowing of temperature interval, facilitating the formation of β‐iPP in iPP/EPR. Furthermore, it was found that the amount of β‐iPP in melt‐blended iPP/EPR samples is dependent on the composition and the maximum amount of β‐iPP formed when the composition of iPP/EPR blends is 85:15 in weight. The results through examining the effect of annealing for iPP/EPR samples at melt state indicate that this annealing may eliminate the susceptibility to β‐crystallization of iPP. However, only α‐iPP can be observed in solution‐blended samples subjected to annealing for different time. The PCM images demonstrate that an obvious phase‐separation happens in both melt‐blended and solution‐blended iPP/EPR samples, implying that compared with the disperse degree of EPR in iPP, the preparation method plays a dominant role in formation of β‐iPP. It is suggested that the origin of formation of β‐iPP results from the thermomechanical history of the EPR component in iPP/EPR. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1704–1712, 2007  相似文献   
23.
The crystallization behavior of miscible syndiotactic polystyrene (sPS) and atactic polystyrene (aPS) blends with different sPS/aPS weight ratios was investigated in supercritical CO2 by using Fourier‐transform infrared spectroscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Supercritical CO2 and aPS exhibited different effects on the conformational change of sPS and competed with each other. Increasing the content of amorphous aPS in the blends made its effect on the conformational change of sPS gradually surpass that of supercritical CO2. Supercritical CO2 favored the formation of the helical conformation of sPS in lower temperature range and the all trans planar conformation in higher temperature range, instead of forming the latter one only in higher temperature range in ambient atmosphere. However, increasing aPS content in the blends pushed the range for forming the helical conformation to lower temperature and made the all trans planar conformation dominant in aPS/sPS 25/75 blend after treating in supercritical CO2 above 60 °C. The all trans planar zigzag conformation was more favorable than the helical conformation after mixing aPS in sPS in supercritical CO2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1755–1764, 2007  相似文献   
24.
25.
The synthesis of three new series of chiral Schiff's bases containing benzilideneaniline and 2-hydroxybenzilideneaniline moieties as mesogenic cores is presented. Differential scanning calorimetry, optical polarizing microscopy and X-ray diffraction measurements were used to study the phase transition temperatures and behaviour. The results reveal that most of these materials show chiral smectic mesomorphism.  相似文献   
26.
钱俭 《中国科学A辑》1994,37(8):850-855
依据J.O.Hinze的理论,研究湍流Prandtl数随分子Prandtl数和流动条件参数变化的规律,并解释有关实验结果。  相似文献   
27.
A novel chiral N‐propargylsulfamide monomer ( 1a ) and its enantiomer ( 1b ) were synthesized and polymerized with (nbd)Rh+B?(C6H5)4 as a catalyst providing poly(1) (poly( 1a ) and poly( 1b )) in high yields (≥99%). Poly(1) could take stable helices in less polar solvents (chloroform and THF), demonstrated by strong circular dichroism signals and UV–vis absorption peaks at about 415 nm and the large specific rotations; but in more polar solvents including DMF and DMSO, poly(1) failed to form helix. Quantitative evaluation with anisotropy factor showed that the helical screw sense had a relatively high thermal stability. These results together with the IR spectra measured in solvents showed that hydrogen bonding between the neighboring sulfamide groups is one of the main driving forces for poly(1) to adopt stable helices. In addition, copolymerization of monomer 1a and monomer 2 was conducted, the solubility of poly(1) was improved drastically. However, the copolymerization had adverse effects on the formation of stable helices in the copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 500–508, 2007  相似文献   
28.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   
29.
2,2,6,6‐Tetramethyl‐4‐[d‐(+)‐10‐camphorsulfonyl]‐1‐piperidinyloxy was synthesized and used as a chiral nitroxide for the bulk polymerizations of styrene initiated with benzoyl peroxide (BPO), tetraethylthiuram disulfide (TETD), and thermal initiation. The results showed that the polymerizations proceeded in a controlled/living way; that is, the kinetics presented approximately first‐order plots, and the number‐average molecular weights of the polymers with narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight) increased with the monomer conversion linearly. The molecular weight distributions in the case of thermal initiation were narrower than those in the case of BPO and TETD, whereas the polymerization rate with BPO or TETD as an initiator was obviously faster than that with thermal initiation. In addition, successful chain‐extension reactions were carried out, and the structures of the obtained polymers were characterized by gel permeation chromatography and 1H NMR. The specific rotations of the polymers were also measured by polarimetric analysis. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1522–1528, 2006  相似文献   
30.
A double hydrophilic block copolymer composed of poly(acrylic acid) (PAA) and poly(4‐vinyl pyridine) (P4VP) was obtained through hydrolysis of diblock copolymer of poly(tert‐butyl acrylate) (PtBA) and P4VP synthesized using atom transfer radical polymerization. Water‐soluble micelles with PAA core and P4VP corona were observed at low (acidic) pH, while micelles with P4VP core and PAA corona were formed at high (basic) pH. Two metalloporphyrins, zinc tetraphenylporphyrin (ZnTPP) and cobalt tetraphenylporphyrin (CoTPP), were used as model compounds to investigate the encapsulation of hydrophobic molecules by both types of micelles. UV–vis spectroscopic measurements indicate that micelles with P4VP core are able to entrap more ZnTPP and CoTPP as a result of the axial coordination between the transition metals and the pyridine groups. The study found that metalloporphyrins encapsulated by the micelles with PAA core could be released on pH increase, while those entrapped by the micelles with P4VP core could be released on pH decrease. This behavior originates from the two‐way pH change‐induced disruption of PAA‐b‐P4VP micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1734–1744, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号