首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6726篇
  免费   1059篇
  国内免费   672篇
化学   4927篇
晶体学   58篇
力学   334篇
综合类   18篇
数学   725篇
物理学   2395篇
  2024年   23篇
  2023年   183篇
  2022年   286篇
  2021年   286篇
  2020年   317篇
  2019年   298篇
  2018年   245篇
  2017年   240篇
  2016年   364篇
  2015年   356篇
  2014年   402篇
  2013年   481篇
  2012年   615篇
  2011年   648篇
  2010年   410篇
  2009年   410篇
  2008年   398篇
  2007年   382篇
  2006年   307篇
  2005年   281篇
  2004年   192篇
  2003年   179篇
  2002年   153篇
  2001年   110篇
  2000年   96篇
  1999年   113篇
  1998年   96篇
  1997年   89篇
  1996年   86篇
  1995年   74篇
  1994年   60篇
  1993年   50篇
  1992年   60篇
  1991年   39篇
  1990年   28篇
  1989年   28篇
  1988年   20篇
  1987年   12篇
  1986年   8篇
  1985年   13篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1957年   1篇
排序方式: 共有8457条查询结果,搜索用时 15 毫秒
81.
Polytetrafluoroethylene (PTFE)‐polyacrylate core–shell nanoparticles were produced by using PTFE micropowder and acrylate via seeded emulsion polymerization in the presence of fluorosurfactant. The properties of emulsion under various polymerization conditions were investigated and optimized. The chemical composition of the PTFE‐polyacrylate nanoparticles was characterized by Fourier‐transform infrared spectrometry (FTIR). The particle size and core–shell structure of the resulting PTFE‐polyacrylate nanoparticles were confirmed by transmission electron microscopy (TEM). Wettability of the PTFE‐polyacrylate core–shell particles was higher than the pristine PTFE. The formation of this kind of PTFE‐polyacrylate core–shell nanoparticles could improve the compatibility of PTFE with other materials because PTFE is covered by polyacrylate shell, which make them promising in various fields. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
82.
Ni ZH  Kou HZ  Zhao YH  Zheng L  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(6):2050-2059
A dicyano-containing [Fe(bpb)(CN)2]- building block has been employed for the synthesis of cyano-bridged heterometallic Ni(II)-Fe(III) complexes. The presence of steric bpb(2-) ligand around the iron ion results in the formation of low-dimensional species: five are neutral NiFe2 trimers and three are one-dimensional (1D). The structure of the 1D complexes consists of alternating [NiL]2+ and [Fe(bpb)(CN)2]- generating a cyano-bridged cationic polymeric chain and the perchlorate as the counteranion. In all complexes, the coordination geometry of the nickel ions is approximately octahedral with the cyano nitrogen atoms at the trans positions. Magnetic studies of seven complexes show the presence of ferromagnetic interaction between the metal ions through the cyano bridges. Variable temperature magnetic susceptibility investigations of the trimeric complexes yield the following J(NiFe) values (based on the spin exchange Hamiltonian H = -2J(NiFe) S(Ni) (S(Fe(1)) + S(Fe(2))): J(NiFe) = 6.40(5), 7.8(1), 8.9(2), and 6.03(4) cm(-1), respectively. The study of the magneto-structural correlation reveals that the cyanide-bridging bond angle is related to the strength of magnetic exchange coupling: the larger the Ni-N[triple bond]C bond angle, the stronger the Ni- - -Fe magnetic interaction. One 1D complex exhibits long-range antiferromagnetic ordering with T(N) = 3.5 K. Below T(N) (1.82 K), a metamagnetic behavior was observed with the critical field of approximately 6 kOe. The present research shows that the [Fe(bpb)(CN)2]- building block is a good candidate for the construction of low-dimensional magnetic materials.  相似文献   
83.
The role of tunneling for two proton-transfer steps in the reactions catalyzed by triosephosphate isomerase (TIM) has been studied. One step is the rate-limiting proton transfer from Calpha in the substrate to Glu 165, and the other is an intrasubstrate proton transfer proposed for the isomerization of the enediolate intermediate. The latter, which is not important in the wild-type enzyme but is a useful model system because of its simplicity, has also been examined in the gas phase and in solution. Variational transition-state theory with semiclassical ground-state tunneling was used for the calculation with potential energy surface determined by an AM1 method specifically parametrized for the TIM system. The effect of tunneling on the reaction rate was found to be less than a factor of 10 at room temperature; the tunneling becomes more important at lower temperature, as expected. The imaginary frequency (barrier) mode and modes that have large contributions to the reaction path curvature are localized on the atoms in the active site, within 4 A of the substrate. This suggests that only a small number of atoms that are close to the substrate and their motions (e.g., donor-acceptor vibration) directly determine the magnitude of tunneling. Atoms that are farther away influence the effect of tunneling indirectly by modulating the energetics of the proton transfer. For the intramolecular proton transfer, tunneling was found to be most important in the gas phase, to be similar in the enzyme, and to be the smallest in water. The major reason for this trend is that the barrier frequency is substantially lower in solution than in the gas phase and enzyme; the broader solution barrier is caused by the strong electrostatic interaction between the highly charged solute and the polar solvent molecules. Analysis of isotope effects showed that the conventional Arrenhius parameters are more useful as experimental criteria for determining the magnitude of tunneling than the widely used Swain-Schaad exponent (SSE). For the primary SSE, although values larger than the transition-state theory limit (3.3) occur when tunneling is included, there is no clear relationship between the calculated magnitudes of tunneling and the SSE. Also, the temperature dependence of the primary SSE is rather complex; the value of SSE tends to decrease as the temperature is lowered (i.e., when tunneling becomes more significant). For the secondary SSE, the results suggest that it is more relevant for evaluating the "coupled motion" between the secondary hydrogen and the reaction coordinate than the magnitude of tunneling. Although tunneling makes a significant contribution to the rate of proton transfer, it appears not to be a major aspect of the catalysis by TIM at room temperature; i.e., the tunneling factor of 10 is "small" relative to the overall rate acceleration by 10(9). For the intramolecular proton transfer, the tunneling in the enzyme is larger by a factor of 5 than in solution.  相似文献   
84.
Silica xerogels were prepared by thermal drying wet gels in an electric oven (70 degrees C) after certain duration of ambient drying, and the relevant effect is investigated on the mesopore structures and surface fractal dimensions of the resultant xerogels. The silica gels were derived from a hydrochloric acid-catalyzed TEOS (tetraethylorthaosilicate) system, and both magnetic stirring and ultrasonic vibration were adopted during sol preparation. The percentage mesoporosity and surface fractal dimensions are evaluated using image analysis methods, based on FE-SEM (field emission gun-scanning electron microscopy) images. The results show that the mesoporosity of the resultant xerogels decreases with the duration of ambient drying for samples prepared using magnetic stirring and low-intensity ultrasonic vibration, while samples subjected to high-intensity ultrasound show a somewhat reverse trend. Samples prepared with magnetic stirring have almost constant surface fractal dimensions (nearly 3), irrespective of the ambient drying before thermal drying. The surface fractal dimensions of samples prepared using ultrasound increase with the duration of ambient drying.  相似文献   
85.
The synthesis of some new N‐[1‐(2,5‐dichlorophenyl)‐5‐methyl‐1,2,3‐triazol‐4‐yl]‐carbamic acid ester derivatives are reported in this paper. The yielded products 6a‐l were confirmed by Elemental analyses, NMR, MS, and IR spectra.  相似文献   
86.
Acylation of acetylcholine (ACh) catalyzed by acetylcholinesterase (AChE) has been studied using high-level theoretical calculations on a model system that mimics the reaction center of the enzyme, and compared with uncatalyzed acylation reaction. The geometries of all the intermediates and transition states, activation energies, and solvent effects have been calculated. The calculations predict simultaneous formation of two short-strong hydrogen bonds (SSHB) in the rate-determining transition state structures [the first SSHB involves the hydrogen atom of Ser-200 (H(s)) and another involves the hydrogen atom of His-440 (H(h))]. In the intermediate states, the H-bond corresponding to H(h) involves SSHB, whereas the one corresponding to H(s) does not.  相似文献   
87.
The "solid-liquid" behavior of vitrimers have not been systematically investigated. Herein, a series of "solid-liquid" vitrimers bearing varying contents of dynamic boronic ester bonds were synthesized via thiol-ene click reactions. These vitrimers allow for flexibile modulation of their network structures and thus show a range of intriguing properties including high stretchability, flexible transition from elasticity to plasticity, strong strain rate dependence, and solid-liquid performance. Th...  相似文献   
88.
Steaming is a characteristic pharmaceutical skill in Traditional Chinese Medicine (TCM). Polygonum multiflorum radix (PM) and its steamed products have been used in Asia for centuries. Raw Polygonum multiflorum radix (RPM) is commonly used to promote defecation but can exert toxicity, especially in liver injury. However, RPM can be made converted into Polygoni multiflori radix praeparata (PMP) by steaming; this is considered a good method to reduce defecation and liver injury caused by PM in Asia. The chemical constituents of TCM are the key to its action. We systematically analyzed the effect of steaming on PM constituents, defecation, and liver injury. We identified 13 main constituents from PM and PMP; the results showed that after being steamed, two constituents (TSG, catechin) had decreased, six constituents (such as procyanidin B1 or B2) had disappeared, four constituents (such as emodin, physcion) had increased, emodin-8-O-β-D-glucoside remained unchanged in PMP. Pharmacological experiments showed that PM could promote defecation; however, there were no obvious effects in response to PMP. Only a high dose of PM for 14 days caused some degree of liver injury, although this injury disappeared after 14 days of drug withdrawal. Network pharmacology and molecular docking studies showed that TSG, emodin and physcion were the most effective in promoting defecation and causing liver injury. Collectively, our findings show that steaming can reduce the effect of PM on promoting defecation and reducing liver injury. TSG may be one of the important constituents in PM that can promote defecation and cause liver injury.  相似文献   
89.
Porous aromatic framework materials with high stability, sensitivity, and selectivity have great potential to provide new sensors for optoelectronic/fluorescent probe devices. In this work, a luminescent porous aromatic framework material (LNU-23) was synthesized via the palladium-catalyzed Suzuki cross-coupling reaction of tetrabromopyrene and 1,2-bisphenyldiborate pinacol ester. The resulting PAF solid exhibited strong fluorescence emission with a quantum yield of 18.31%, showing excellent light and heat stability. Because the lowest unoccupied molecular orbital (LUMO) of LNU-23 was higher than that of the nitro compounds, there was an energy transfer from the excited LNU-23 to the analyte, leading to the selective fluorescence quenching with a limit of detection (LOD) ≈ 1.47 × 10−5 M. After integrating the luminescent PAF powder on the paper by a simple dipping method, the indicator papers revealed a fast fluorescence response to gaseous nitrobenzene within 10 s, which shows great potential in outdoor fluorescence detection of nitro compounds.  相似文献   
90.
Blue-phase liquid crystal (BPLC) is considered as the next-generation liquid crystal display material, but its practical application is seriously affected by a narrow temperature range and a long research period. In this paper, we used inkjet printing technology to prepare BPLC materials with high throughput, and try to use machine vision technology to test BPLC with high throughput. The “standard curve method” for establishing each printing channel and the “vector matching method” for searching the chromaticity value of the minimum distance were proposed to improve the accuracy of inkjet printing BPLC materials. For a large number of sample-phase images, we propose a machine learning method to identify the liquid crystal phase. In this paper, for the first time, the high-throughput preparation and high-throughput detection of 1080 BPLC samples with five common components by a comprehensive experimental method has been successfully realized. The results are helpful to improve the research efficiency of blue-phase materials and provide a theoretical basis and practical guidance for rapid screening of multi-component BPLC materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号