首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1026篇
  免费   80篇
  国内免费   2篇
化学   921篇
力学   5篇
数学   78篇
物理学   104篇
  2023年   14篇
  2022年   35篇
  2021年   50篇
  2020年   40篇
  2019年   46篇
  2018年   23篇
  2017年   19篇
  2016年   54篇
  2015年   54篇
  2014年   40篇
  2013年   62篇
  2012年   95篇
  2011年   113篇
  2010年   70篇
  2009年   30篇
  2008年   61篇
  2007年   76篇
  2006年   54篇
  2005年   50篇
  2004年   27篇
  2003年   32篇
  2002年   22篇
  2001年   13篇
  2000年   2篇
  1999年   8篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1929年   1篇
  1928年   1篇
  1926年   1篇
  1925年   2篇
  1924年   1篇
  1923年   2篇
  1920年   1篇
  1875年   1篇
  1868年   1篇
排序方式: 共有1108条查询结果,搜索用时 15 毫秒
41.
A tandem imine addition‐SNAr annulation reaction has been developed as a new approach to the synthesis of 4‐oxo‐1,2,3,4‐tetrahydroquinoline‐3‐carboxylic esters. A series of these structures has been generated by reacting selected imines with tert‐butyl 2‐fluoro‐5‐nitrobenzoylacetate. Structural variations in the final products are accomplished by changing the substituents on the imine and the alkyl group of the ester. The title compounds are isolated as their enols in 55–97% yield without the need for added base or catalysts. The synthesis of the starting materials as well as mechanistic studies and further synthetic conversions of the products are presented.  相似文献   
42.
1,4-Diazabicyclo[2.2.2]octane (DABCO) has been used as a mild and efficient catalyst for the synthesis of various tetrahydrobenzo[b]pyran derivatives via a one-pot, three component condensation of aromatic aldehydes, dimedone, and active methylene compounds. This method provides several advantages: a simple workup procedure, environmental friendliness, neutral conditions, and good yields. In addition, water or 50% aqueous ethanol was chosen as a green solvent.

Additional information

ACKNOWLEDGMENT

This work was supported by an Indiana University–Purdue University Fort Wayne Summer Faculty Research Grant.  相似文献   
43.
Dimethocaine (DMC, larocaine), a synthetic derivative of cocaine, is a widely distributed “legal high” consumed as a “new psychoactive substance” (NPS) without any safety testing, for example studies of metabolism. Therefore, the purpose of this work was to study its in-vivo and in-vitro metabolism by use of liquid chromatography–(high resolution) mass spectrometry (LC–HRMS n ). DMC was administered to male Wistar rats (20 mg kg?1) and their urine was extracted either by solid-phase extraction after enzymatic cleavage of conjugates or by use of protein precipitation (PP). The metabolites were separated and identified by LC–HRMS n . The main phase I reactions were ester hydrolysis, deethylation, hydroxylation of the aromatic system, and a combination of these. The main phase II reaction was N-acetylation of the p-aminobenzoic acid part of the unchanged parent compound and of several phase I metabolites. The metabolites identified were then used for identification of DMC in rat urine after application of a common user’s dose. By use of GC–MS and LC–MS n standard urine-screening approaches (SUSAs), DMC and its metabolites could be detected in the urine samples.  相似文献   
44.
4-Methyl-amphetamine (1-(4-methylphenyl)propane-2-amine; 4-MA) and its isomers 2-methyl-amphetamine (2-MA) and 3-methyl-amphetamine (3-MA) belong to the group of amphetamine-type stimulants and of new psychoactive substances. Several studies showed similar potencies in releasing noradrenalin and dopamine, but higher potencies in releasing serotonin than amphetamine. In March 2013, the EU Council decided on an EU-wide control based on the European Monitoring Centre for Drugs and Drug Addiction risk assessment report documenting that 4-MA was sold as amphetamine on the illicit market and detected in several fatal cases. Therefore, 4-MA and its isomers should be covered by drug testing in clinical and forensic toxicology. The aims of the presented work were to study the metabolism and detectability of each isomer in urine samples. For metabolism studies, rat urine samples were isolated by solid-phase extraction without and after enzymatic cleavage of conjugates. The phase I metabolites were separated and identified after acetylation by gas chromatography–mass spectrometry (GC-MS) and/or liquid chromatography–high resolution-linear ion trap mass spectrometry (LC-HR-MS n ) and the phase II metabolites by LC-HR-MS n . From the identified phase I and II metabolites, the following main metabolic pathways were deduced: aromatic hydroxylation, hydroxylation of the phenylmethyl group followed by oxidation to the corresponding carboxylic acid, hydroxylation of the side chain, and glucuronidation and/or sulfation of the hydroxy and carboxy groups. CYP2D6 was involved in the aromatic hydroxylation. Finally, the intake of a commonly used dose of the MAs could be confirmed in rat urine using the authors’ GC-MS and the LC-MS n standard urine screening approaches. Differentiation of the isomers to confirm the intake of a specific isomer was possible with an additional workup in rat urine.  相似文献   
45.
Diffusiophoresis phenomenon of aoft particles suspended in binary electrolyte solutions is explored theoretically in this study based on the spherical cell model, focusing on the chemiphoresis component in absence of diffusion potential. Both the electrostatic and hydrodynamic aspects of the boundary confinement, or steric effect, due to the presence of neighboring particles are examined extensively under various electrokinetic conditions. Significant local extrema are found in mobility profiles expressed as functions of the Debye length in general, synchronized with the strength of the motion-inducing double layer polarization. Moreover, a seemingly peculiar phenomenon is observed that the soft particles may move faster in more concentrated suspensions. The competition between the simultaneous enhancement of the motion-inducing electric driving force and the motion-retarding hydrodynamic drag force from the boundary confinement effect of the neighboring particles is found to be responsible for it. The above findings are also demonstrated experimentally in a very recent study on the diffusiophoretic motion of soft particles through porous collagen hydrogels. The results presented here are useful in various practical applications of soft particles like drug delivery.  相似文献   
46.
Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13C1 spins of [1-13C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2O. Order-unity 13C (>50 %) polarization of catalyst-bound [1-13C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3OD. Efficient 13C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s−1 versus ∼0.1 s−1, respectively, for a 6 mM catalyst-[1-13C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.  相似文献   
47.
We have characterized a sulfobetaine stationary phase based on 1.7 μm ethylene-bridged hybrid organic–inorganic particles, which is intended for use in hydrophilic interaction chromatography. The efficiency of a column packed with this material was determined as a function of flow rate, demonstrating a minimum reduced plate height of 2.4. The batch-to-batch reproducibility was assessed using the separation of a mixture of acids, bases, and neutrals. We compared the retention and selectivity of the hybrid sulfobetaine stationary phase to that of several benchmark materials. The hybrid sulfobetaine material gave strong retention for polar neutrals and high selectivity for methyl groups, hydroxy groups, and configurational isomers. Large differences in cation and anion retention were observed among the columns. We characterized the acid and base stability of the hybrid sulfobetaine stationary phase, using accelerated tests at pH 1.3 and 11.0, both at 70°C. The results support a recommended pH range of 2–10. We also investigated the performance of columns packed with this material for metal-sensitive analytes, comparing conventional stainless steel column hardware to hardware that incorporates hybrid surface technology to mitigate interactions with metal surfaces. Compared to the conventional columns, the hybrid surface technology columns showed a greatly improved peak shape.  相似文献   
48.
A nanoformulation composed of curdlan, a linear polysaccharide of 1,3‐β‐linked d ‐glucose units, hydrogen bonded to poly(γ ‐glutamic acid) (PGA), was developed to stimulate macrophage. Curdlan/PGA nanoparticles (C‐NP) are formulated by physically blending curdlan (0.2 mg mL?1 in 0.4 m NaOH) with PGA (0.8 mg mL?1). Forster resonance energy transfer (FRET) analysis demonstrates a heterospecies interpolymer complex formed between curdlan and PGA. The 1H‐NMR spectra display significant peak broadening as well as downfield chemical shifts of the hydroxyl proton resonances of curdlan, indicating potential intermolecular hydrogen bonding interactions. In addition, the cross peaks in 1H‐1H 2D‐NOESY suggest intermolecular associations between the OH‐2/OH‐4 hydroxyl groups of curdlan and the carboxylic‐/amide‐groups of PGA via hydrogen bonding. Intracellular uptake of C‐NP occurs over time in human monocyte‐derived macrophage (MDM). Furthermore, C‐NP nanoparticles dose‐dependently increase gene expression for TNF‐α, IL‐6, and IL‐8 at 24 h in MDM. C‐NP nanoparticles also stimulate the release of IL‐lβ, MCP‐1, TNF‐α, IL‐8, IL‐12p70, IL‐17, IL‐18, and IL‐23 from MDM. Overall, this is the first demonstration of a simplistic nanoformulation formed by hydrogen bonding between curdlan and PGA that modulates cytokine gene expression and release of cytokines from MDM.  相似文献   
49.
50.
We have observed reversible light-induced mechanical switching for individual organic molecules bound to a metal surface. Scanning tunneling microscopy (STM) was used to image the features of individual azobenzene molecules on Au(111) before and after reversibly cycling their mechanical structure between trans and cis states using light. Azobenzene molecules were engineered to increase their surface photomechanical activity by attaching varying numbers of tert-butyl (TB) ligands ("legs") to the azobenzene phenyl rings. STM images show that increasing the number of TB legs "lifts" the azobenzene molecules from the substrate, thereby increasing molecular photomechanical activity by decreasing molecule-surface coupling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号