首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1232篇
  免费   77篇
  国内免费   5篇
化学   1031篇
力学   16篇
数学   96篇
物理学   171篇
  2024年   1篇
  2023年   17篇
  2022年   50篇
  2021年   48篇
  2020年   44篇
  2019年   51篇
  2018年   29篇
  2017年   23篇
  2016年   61篇
  2015年   63篇
  2014年   43篇
  2013年   79篇
  2012年   107篇
  2011年   140篇
  2010年   77篇
  2009年   37篇
  2008年   77篇
  2007年   89篇
  2006年   60篇
  2005年   53篇
  2004年   30篇
  2003年   35篇
  2002年   25篇
  2001年   13篇
  2000年   2篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1980年   2篇
  1977年   1篇
排序方式: 共有1314条查询结果,搜索用时 0 毫秒
31.
One of the main drawbacks of EPM/EPDM rubber vulcanization by peroxides is the lack of selectivity, which leads to a number of side reactions. The reaction mechanisms at the base of peroxides crosslinking are generally known and include the formation of alkyl and allyl (in the EPDM case) macro-radicals through H-abstraction from the macromolecular chains and the combination of these macro-radicals, which macroscopically is known with the term “vulcanization”. In the paper, a simple but effective mathematical model having kinetic base, to predict the vulcanization degree of rubber vulcanized with peroxides, is presented. The approach takes contemporarily into consideration, albeit within a simplified scheme, the actual reactions occurring during peroxidic curing, namely initiation, H-abstraction, combination and addition, and supersedes the simplified approach used in practice, which assumes for peroxidic curing a single first order reaction. After a suitable re-arrangement of the first order system of differential equations obtained from the actual kinetic system adopted, a single second order non-linear differential equation is obtained and numerically solved by means of a Runge–Kutta approach. Kinetic parameters to set are evaluated by means of a standard least squares procedure where target data are represented by experimental values available, i.e. normalized rheometer curves or percentage crosslink density experimentally evaluated by means of more sophisticated procedures. In order to have an insight into the reliability of the numerical approach proposed, two cases of technical interest are investigated in detail: the first is an EPDM crosslinked with two different peroxides, whereas the second is a compound with high level of unsaturation, showing reversion at medium-high vulcanization temperature ( $175^\circ \text{ C}$ ).  相似文献   
32.
Molecular beam scattering experiments and molecular dynamics simulations have been combined to develop an atomic-level understanding of energy transfer, accommodation, and reactions during collisions between gases and model organic surfaces. The work highlighted in this progress report has been motivated by the scientific importance of understanding fundamental interfacial chemical reactions and the relevance of reactions on organic surfaces to many areas of environmental chemistry. The experimental investigations have been accomplished by molecular beam scattering from ω-functionalized self-assembled monolayers (SAMs) on gold. Molecular beams provide a source of reactant molecules with precisely characterized collision energy and flux; SAMs afford control over the order, structure, and chemical nature of the surface. The details of molecular motion that affect energy exchange and scattering have been elucidated through classical-trajectory simulations of the experimental data using potential energy surfaces derived from ab initio calculations. Our investigations began by employing rare-gas scattering to explore how alkanethiol chain length and packing density, terminal group relative mass, orientation, and chemical functionality influence energy transfer and accommodation at organic surfaces. Subsequent studies of small molecule scattering dynamics provided insight into the influence of internal energy, molecular orientation, and gas–surface attractive forces in interfacial energy exchange. Building on the understanding of scattering dynamics in non-reactive systems, our work has recently explored the reaction probabilities and mechanisms for O3 and atomic fluorine in collisions with a variety of functionalized SAM surfaces. Together, this body of work has helped construct a more comprehensive understanding of reaction dynamics at organic surfaces.  相似文献   
33.
Journal of Radioanalytical and Nuclear Chemistry - Receptor tyrosine kinase Ror1 is widely expressed during embryogenesis but it is absent within most mature tissues. However, expression of Ror1...  相似文献   
34.
The efficiency of conventional heating energy source compared with Infrared (IR), Ultrasound (US), Microwave and the simultaneous combination US–IR eco-friendly approaches for preparation of new N-(5-R1 -amino-2-nitrophenyl)acetamides and 5-R1-amino-2-nitroaniline by Nucleophilic Aromatic Substitution (SNAr) via addition–elimination reactions on the halogens F, Cl, Br, I, employing amines as nucleophiles were explored. Moreover, phenyldiazenyl derivatives in good yields by an oxidative one-pot SNAr-based amination reaction from an unusual oxidation of 2-phenylhydrazinyl derivatives in DMSO was prepared.  相似文献   
35.
Cover Picture     
The cover picture shows in the background the whole cell of a methanotrophic bacterium on which are superimposed components of methane monooxygenase (the structure of the hydroxylase component (top), one of the two four-helix bundles that house the catalytic diiron centers (left)) and a schematic diagram of the catalytic cycle by which the enzyme converts dioxygen and methane into methanol and water. More about this unusual enzyme system is reported by Lippard et al. on p. 2782 ff.  相似文献   
36.
Molecular orbital and density functional theory calculations are performed on some di- and tetrasubstituted derivatives of anthraquinone, dihydrophenazine, and acridone to investigate cooperativity in a pair of bifurcated hydrogen bonds occurring in the same molecule. The various structures were selected as convenient model systems for three-center hydrogen bonding of both H...A...H and A...H...A types. In the former type, the C=O moieties in anthraquinone and acridone act as bifurcated hydrogen bond acceptors, and substituted OH groups act as hydrogen bond donors. In the latter type, the N-H moieties in dihydrophenazine, acridones act as bifurcated hydrogen bond donors, and the carbonyl oxygens of substituted CHO groups act as hydrogen bond acceptors. Different indicators of cooperativity reveal that two intramolecular bifurcated hydrogen bonds simultaneously present in the same molecule significantly reinforce each other.  相似文献   
37.
The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.  相似文献   
38.
The preparation and chemistry of novel phosphoranyl-derived lambda(3)-iodanes is reported. The phosphoranyl-derived phenyliodonium sulfonates were prepared in good yields by the reaction of stabilized phosphonium ylides [1-triphenylphosphoranylidene-2-propanone, methyl(triphenylphosphoranylidene)acetate, (triphenylphosphoranylidene)acetaldehyde, and (triphenylphosphoranylidene)acetonitrile] with the pyridinium complex of iodobenzene ditriflate or with [hydroxy(tosyloxy)iodo]benzene under mild conditions. These compounds represent a potentially useful class of reagents that combine in one molecule synthetic advantages of a phosphonium ylide and an iodonium salt. Specifically, phosphorane-derived phenyliodonium tosylates can react with soft nucleophiles, such as iodide, bromide, benzenesulfinate, and thiophenolate anions, with a selective formation of the respective alpha-functionalized phosphonium ylides, which can be further converted to alkenes by the Wittig reaction with benzaldehyde. The phosphoranyl-derived benziodoxoles can be prepared by the reaction of 1-acetoxybenziodoxole with stabilized phosphonium ylides. An unusual ligand exchange on the iodine(III) center resulting in the substitution of a carbon ligand with an oxygen ligand was observed in the reaction of these compounds with strong acids.  相似文献   
39.
Two diastereomeric analogues of ring C of nisin incorporating a novel norlanthionine residue have been synthesized via a triply orthogonal protecting group strategy. A full structural study was carried out by NMR, which elucidated the conformational properties of the two peptides and enabled the identity of each diastereoisomer to be proposed.  相似文献   
40.
Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was coupled with atmospheric pressure photoionization (APPI) for the first time and used for the analysis of several corticosteroids.1 The analytes showed excellent response using APPI when compared with both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). APPI has the advantage of requiring less heat for desolvation, resulting in less thermal degradation of the analytes and higher signal-to-noise than APCI. In terms of ultimate sensitivity, APPI is more efficient than either ESI or APCI for the analysis of corticosteroids. With some compounds, the high-resolution capability of FTICRMS was necessary to obtain an accurate mass due to contributions of the M(+.) (13)C isotope in the [M+H](+) ion peak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号