首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1450篇
  免费   80篇
  国内免费   7篇
化学   1267篇
晶体学   9篇
力学   7篇
数学   104篇
物理学   150篇
  2024年   1篇
  2023年   15篇
  2022年   55篇
  2021年   55篇
  2020年   43篇
  2019年   52篇
  2018年   24篇
  2017年   25篇
  2016年   60篇
  2015年   65篇
  2014年   51篇
  2013年   80篇
  2012年   119篇
  2011年   140篇
  2010年   90篇
  2009年   35篇
  2008年   86篇
  2007年   96篇
  2006年   70篇
  2005年   69篇
  2004年   58篇
  2003年   50篇
  2002年   32篇
  2001年   21篇
  2000年   12篇
  1999年   12篇
  1998年   5篇
  1997年   6篇
  1996年   12篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1986年   6篇
  1985年   10篇
  1984年   11篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有1537条查询结果,搜索用时 0 毫秒
41.
Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13C1 spins of [1-13C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2O. Order-unity 13C (>50 %) polarization of catalyst-bound [1-13C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3OD. Efficient 13C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s−1 versus ∼0.1 s−1, respectively, for a 6 mM catalyst-[1-13C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.  相似文献   
42.
A nanoformulation composed of curdlan, a linear polysaccharide of 1,3‐β‐linked d ‐glucose units, hydrogen bonded to poly(γ ‐glutamic acid) (PGA), was developed to stimulate macrophage. Curdlan/PGA nanoparticles (C‐NP) are formulated by physically blending curdlan (0.2 mg mL?1 in 0.4 m NaOH) with PGA (0.8 mg mL?1). Forster resonance energy transfer (FRET) analysis demonstrates a heterospecies interpolymer complex formed between curdlan and PGA. The 1H‐NMR spectra display significant peak broadening as well as downfield chemical shifts of the hydroxyl proton resonances of curdlan, indicating potential intermolecular hydrogen bonding interactions. In addition, the cross peaks in 1H‐1H 2D‐NOESY suggest intermolecular associations between the OH‐2/OH‐4 hydroxyl groups of curdlan and the carboxylic‐/amide‐groups of PGA via hydrogen bonding. Intracellular uptake of C‐NP occurs over time in human monocyte‐derived macrophage (MDM). Furthermore, C‐NP nanoparticles dose‐dependently increase gene expression for TNF‐α, IL‐6, and IL‐8 at 24 h in MDM. C‐NP nanoparticles also stimulate the release of IL‐lβ, MCP‐1, TNF‐α, IL‐8, IL‐12p70, IL‐17, IL‐18, and IL‐23 from MDM. Overall, this is the first demonstration of a simplistic nanoformulation formed by hydrogen bonding between curdlan and PGA that modulates cytokine gene expression and release of cytokines from MDM.  相似文献   
43.
This note establishes an interior quantitative lower bound for nonnegative supersolutions of fully nonlinear uniformly parabolic equations. The result may be interpreted as a quantitative version of a growth lemma established by Krylov and Safonov for nonnegative supersolutions of linear uniformly parabolic equations in nondivergence form. Our approach is different, and follows from an application of a reverse Holder inequality. The result is the parabolic analogue of an elliptic regularity estimate established by Caffarelli, Souganidis, and Wang in the stochastic homogenization of fully nonlinear uniformly elliptic equations.  相似文献   
44.
We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.
Figure
115F  相似文献   
45.
A methodology for monitoring washing procedures applied to stabilize archaeological iron is described. It is based on the combination of voltammetry of microparticles (VMP) with electrochemical impedance spectroscopy (EIS). A semi-empirical approach is used where the impedances at low and high frequencies were related with the fraction areas of passive and corrosion layers generated during the stabilizing treatment, the thickness, and the porosity of the corrosion layer. The variation of such parameters with the time of washing was determined from EIS data for four types of desalination procedures using concentrated NaOH and/or Na2SO3 aqueous solutions on archaeological iron artifacts. After 2 months of treatment, EIS data indicate that an essentially identical “stable” state was attained in all cases, as confirmed by the formation of a passive magnetite layer identified in VMP measurements while the rate of variation of corroded surface and porosity at short washing times varied significantly from one stabilization procedure to another.  相似文献   
46.
Gold(III) π-complexes have been authenticated recently with alkenes, alkynes, and arenes. The key importance of PdII π-allyl complexes in organometallic chemistry (Tsuji–Trost reaction) prompted us to explore gold(III) π-allyl complexes, which have remained elusive so far. The (P,C)AuIII(allyl) and (methallyl) complexes 3 and 3′ were readily prepared and isolated as thermally and air-stable solids. Spectroscopic and crystallographic analyses combined with detailed DFT calculations support tight quasi-symmetric η3-coordination of the allyl moiety. The π-allyl gold(III) complexes are activated towards nucleophilic additions, as substantiated with β-diketo enolates.  相似文献   
47.
Hybridizing graphene and molecules possess a high potential for developing materials for new applications. However, new methods to characterize such hybrids must be developed. Herein, the wet-chemical non-covalent functionalization of graphene with cationic π-systems is presented and the interaction between graphene and the molecules is characterized in detail. A series of tricationic benzimidazolium salts with various steric demand and counterions was synthesized, characterized and used for the fabrication of graphene hybrids. Subsequently, the doping effects were studied. The molecules are adsorbed onto graphene and studied by Raman spectroscopy, XPS as well as ToF-SIMS. The charged π-systems show a p-doping effect on the underlying graphene. Consequently, the tricationic molecules are reduced through a partial electron transfer process from graphene, a process which is accompanied by the loss of counterions. DFT calculations support this hypothesis and the strong p-doping could be confirmed in fabricated monolayer graphene/hybrid FET devices. The results are the basis to develop sensor applications, which are based on analyte/molecule interactions and effects on doping.  相似文献   
48.
49.
A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.  相似文献   
50.
Carboxylic acid is a commonly utilized functional group for covalent surface conjugation of carbon nanoparticles that is typically generated by acid oxidation. However, acid oxidation generates additional oxygen containing groups, including epoxides, ketones, aldehydes, lactones, and alcohols. We present a method to specifically enrich the carboxylic acid content on fluorescent nanodiamond (FND) surfaces. Lithium aluminum hydride is used to reduce oxygen containing surface groups to alcohols. The alcohols are then converted to carboxylic acids through a rhodium (II) acetate catalyzed carbene insertion reaction with tert–butyl diazoacetate and subsequent ester cleavage with trifluoroacetic acid. This carboxylic acid enrichment process significantly enhanced nanodiamond homogeneity and improved the efficiency of functionalizing the FND surface. Biotin functionalized fluorescent nanodiamonds were demonstrated to be robust and stable single-molecule fluorescence and optical trapping probes.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] 5 [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号