首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   12篇
化学   95篇
力学   1篇
数学   3篇
物理学   21篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   1篇
  1997年   3篇
  1995年   1篇
  1994年   7篇
  1991年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1908年   1篇
  1906年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
81.
Reactions of Co(NCS)2 with 2,5‐dimethylpyrazine lead to the formation of five compounds of compositions Co(NCS)2(H2O)4 · 4(2,5‐dimethylpyrazine) ( 1 ), Co(NCS)2(H2O)4 · 3(2,5‐dimethylpyrazine) ( 2 ), Co(NCS)2(2,5‐dimethylpyrazine)(H2O)2 · 3(2,5‐dimethylpyrazine) ( 3 ), [Co(NCS)2]2(H2O)6 · 4(2,5‐dimethylpyrazine) · 4H2O ( 4 ), and Co(NCS)2(2,5‐dimethylpyrazine)(MeOH)2 ( 5 ). 1 and 2 are simple aqua complexes, in which the Co cations are octahedrally coordinated by two thiocyanate anions and four water molecules, whereas in 3 the Co cations are linked by the 2,5‐dimethylpyrazine ligands into chains. In compound 4 Co(NCS)2](H2O)6 dimers are observed, which are linked by bridging water molecules. In compound 5 the Co cations are connected into chains by the 2,5‐dimethylpyrazine co‐ligand and are additionally coordinated by terminal anionic ligands and methanol molecules. Thermogravimetric measurements of compounds 1 – 4 show several mass steps, in which the water and the co‐ligands and the water molecules are stepwise removed. Elemental analysis, XRPD investigations, and IR spectroscopic investigations indicate that all of these compounds decompose into new phases of composition Co(NCS)2(2,5‐dimethylpyrazine)2 ( 6 ) that on further heating decompose into [Co(NCS)2]3(2,5‐dimethylpyrazine) ( 8 ) via Co(NCS)2(2,5‐dimethylpyrazine) ( 7 ) as intermediate. Compound 7 can be directly obtained by thermal removal of methanol from compound 5 .  相似文献   
82.
The room temperature reaction of Na4Sn2S6 · 5H2O with CoCl2 · 6H2O and 2-(aminomethyl)pyridine (2-AMP) or trans-1,2-diamino-cyclohexane (DACH) leads to crystallization of two compounds with the compositions [Co(2-(aminomethyl)pyridine)3]2 Sn2S6 · 10H2O ( 1 ) and [Co(trans-1,2-diaminocyclohexane)3]2Sn2S6 · 8H2O ( 2 ). In both compounds [Sn2S6]4– anions are present that are charge balanced each by two Co2+ centered complexes. Each of the two CoII cations are sixfold coordinated by six N atoms of three 2-AMP or DACH ligands within slightly distorted octahedra. In compound 1 , the two complexes are linked by one [Sn2S6]4– anion via strong N–H ··· S hydrogen bonds into centrosymmetric charge neutral trimeric units, that are further linked by weak C–H ··· S and N–H ··· S hydrogen bonds into chains that are directed along the a axis. These chains are further joined by N–H ··· O and O–H ··· O hydrogen bonds into a 3D network, with the H2O molecules forming chains along the b axis. The crystal structure of 2 is similar to that of 1 featuring trimeric units which are also linked into chains. Between the chains water molecules are embedded that link the chains into a 3D network. Upon heating 2 in a thermobalance the water and ligand molecules are removed in discrete steps, indicating that compounds with more condensed thiostannate networks will form.  相似文献   
83.
 The inorganic-organic coordination polymer infin; 2[Cu2I2(μ-4-4′-bipyridine)] was prepared by the reaction of Cu(I)I and 4,4-bipyridine in acetonitrile. Its structure consists of staircase-like CuX double chains which are connected to sheets by the 4,4-bipyridine ligands. The thermal decomposition of the corresponding 1:1 copper(I) halide-4,4-bipyridine compounds infin; 2[CuX(μ-4-4′-bipyridine)] (X = Cl, Br, I) was investigated using simultaneous difference thermal analysis and thermogravimetry (DTA-TG), thermomicroscopy, and temperature resolved X-ray powder diffraction in air or argon. Upon heating infin; 2[CuX(μ-4-4′-bipyridine)], several changes in sample mass are observed which correspond to a stepwise loss of the organic ligands. Temperature-resolved X-ray powder diffraction proves that infin; 2[CuX(μ-4-4′-bipyridine)] transforms to infin; 2[Cu2 X 2(μ-4-4′-bipyridine)] during the decomposition; the latter looses the remaining ligands when heated further, forming the corresponding copper(I)halides. When the experiments were performed under an argon atmosphere, the 2:1 coordination polymers were obtained as phase-pure compounds.  相似文献   
84.
The synthesis of three new ligands and their coordination behavior towards zinc ions with strongly coordinating anions and cobalt ions with weakly coordinating anions are reported. The ligands have two adjacent imidazolyl‐pyridinyl and pyrazolyl‐pyridinyl binding pockets, respectively, which are linked by a phenol unit. We also investigated the dynamic behavior of the ligand having the imidazolyl‐pyridiyl sidearm in solution. The reaction of the ligands and ZnCl2 yielded complexes of the type [ L Zn2Cl3]. When we used CoII salts with weakly coordinating anions, complexes of the general formula [ L 2Co2]2+ were formed.  相似文献   
85.
In the structure of the title compound, [Cu3Br2(C6H5N2O2)2(H2O)4], both copper(I) and copper(II) cations are present. The copper(II) cations are located on centres of inversion and are coordinated by two N atoms and two carboxyl­ate O atoms from two symmetry-related 5-methyl­pyrazine-2-carboxyl­ate anions, with two water mol­ecules completing a distorted octahedron. The copper(I) cations are coordinated by the second N atom of the 5-methyl­pyrazine-2-carboxyl­ate anion, one water mol­ecule and two bromide anions within a distorted tetrahedron. Each of the bromide anions connects two symmetry-equivalent copper(I) cations to form zigzag-like CuBr chains. These chains are connected by the [di­aqua­bis(5-methyl­pyrazine-2-carboxyl­ato)]copper(II) complexes, forming corrugated sheets parallel to (100). The CuBr chains and the sheets are connected via O—H⋯O and O—H⋯Br hydrogen bonding.  相似文献   
86.
The active centre of sMMO contains a diiron core ligated by histidine and glutamate residues, which is capable of catalysing a remarkable reaction: the oxidation of methane with O2 yielding methanol. This review describes the results of efforts to prepare low‐molecular‐weight analogues of this active site directing towards 1) the assignment of the spectroscopic signatures identified for certain intermediates of the sMMO catalytic cycle to structural features and 2) the synthesis of molecular compounds that can mimic the reactivity. The historical development of the model chemistry, which is subdivided into structural and functional mimicking, is illustrated and achievements reached so far are highlighted.  相似文献   
87.
88.
89.
The activation of N2, CO2 or H2O to energy-rich products relies on multi-electron transfer reactions, and consequently it seems desirable to understand the basics of light-driven accumulation of multiple redox equivalents. Most of the previously reported molecular acceptors merely allow the storage of up to two electrons. We report on a terphenyl compound including two disulfide bridges, which undergoes four-electron reduction in two separate electrochemical steps, aided by a combination of potential compression and inversion. Under visible-light irradiation using the organic super-electron donor tetrakis(dimethylamino)ethylene, a cascade of light-induced reaction steps is observed, leading to the cleavage of both disulfide bonds. Whereas one of them undergoes extrusion of sulfur to result in a thiophene, the other disulfide is converted to a dithiolate. These insights seem relevant to enhance the current fundamental understanding of photochemical energy storage.  相似文献   
90.
Solvent effects are often difficult to understand in cases where reaction intermediates, and thus their differential behavior in different solvents, are not directly observable by traditional ensemble analytical techniques. Herein, the sensitivity of single-particle fluorescence microscopy uniquely enables direct observation of organozinc intermediates and solvent effects on their build-up and persistence. When combined with NMR spectroscopy, these imaging data pinpoint the previously elusive mechanistic origin of solvent effects in the synthesis of widely used organozinc reagents. These findings characterize the acceleration of oxidative addition of the starting organoiodide to the surface of zinc metal in DMSO relative to THF, but once formed, surface intermediates display similar persistence in either solvent. The current studies are the first demonstration of a highly sensitive, single-particle fluorescence microscopy technique to pinpoint otherwise elusive solvent effects in synthetic chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号