首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5467篇
  免费   272篇
  国内免费   30篇
化学   4117篇
晶体学   78篇
力学   135篇
数学   329篇
物理学   1110篇
  2024年   7篇
  2023年   42篇
  2022年   124篇
  2021年   125篇
  2020年   113篇
  2019年   126篇
  2018年   94篇
  2017年   79篇
  2016年   191篇
  2015年   185篇
  2014年   205篇
  2013年   332篇
  2012年   431篇
  2011年   511篇
  2010年   298篇
  2009年   273篇
  2008年   410篇
  2007年   350篇
  2006年   318篇
  2005年   321篇
  2004年   224篇
  2003年   180篇
  2002年   180篇
  2001年   96篇
  2000年   88篇
  1999年   75篇
  1998年   46篇
  1997年   34篇
  1996年   43篇
  1995年   40篇
  1994年   36篇
  1993年   34篇
  1992年   21篇
  1991年   22篇
  1990年   23篇
  1989年   13篇
  1988年   12篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   7篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1976年   4篇
  1975年   2篇
  1974年   5篇
排序方式: 共有5769条查询结果,搜索用时 15 毫秒
71.
The history and present state of the art in the chemistry of mesophase pitch, which is an important precursor for carbon fiber and other high-performance industrial carbons, are reviewed relative to their structural properties. The structural concepts in both microscopic and macroscopic views are summarized in terms of the sp(2) carbon hexagonal plane as a basic unit common to graphitic materials, its planar stacking in clusters, and cluster assembly into microdomains and domains, the latter of which reflect the isochromatic unit of optical anisotropy. Such a series of structural units is described in a semiquantitative manner corresponding to the same units of graphitic materials, although the size and stacking height of the hexagonal planes (graphitic sheets) are very different. Mesophase pitch is a liquid crystal material whose basic structural concepts are maintained in the temperature range of 250 to 350 degrees C. The melt flow and thermal properties are related to its micro- and mesoscopic structure. The structure of mesophase-pitch-based carbon fiber of high tensile strength, modulus, and thermal conductivity has been formed through spinning, and has inherited the same structural concepts of mesophase pitch. Stabilization settles the structure in successive heat treatments up to 3000 degrees C. Carbonization and graphitization enable growth of the hexagonal planes and their stacking into units of graphite. Such growth is governed and controlled by the alignment of micro- and mesoscopic structures in the mesophase pitch, which define the derived carbon materials as nanostructural materials. Their properties are controlled by the nanoscopic units that are expected to behave as nanomaterials when appropriately isolated or handled.  相似文献   
72.
Summary The Advanced Spent Conditioning Process (ACP) developed by the KAERI is based on pyrometallurgy and the electrolytic reduction plays a central role in transforming spent oxide fuels into metals. The constituents of the spent fuels are distributed between a salt and a reduced metal phase during electrolysis. Lithium metal is produced in a molten LiCl-Li2O cell and then it reacts with the metal oxides of the spent fuel producing Li2O and reduced metals. By focusing on the activity of Li2O and the electric potential, the electrolytic reduction process of the ACP is discussed. Thermodynamic considerations are defined and operation conditions are proposed including Li2O activity and cell potential.  相似文献   
73.
The goal of this study was to investigate the effect of photothermal laser irradiation on rat breast tumor (DMBA-4) vascular contents. An 805-nm diode laser was used in our experiment with a power density ranging from 0.32 to 1.27 W/cm2. The dynamic changes of oxygenated hemoglobin and total hemoglobin concentrations, delta[HbO2] and delta[Hb]total, in rat tumors during photothermal irradiation were noninvasively monitored by a near-infrared spectroscopy system. A multichannel thermal detection system was also used simultaneously to record temperatures at different locations within the tumors. Our experimental results showed that: (1) photoirradiation did have the ability to induce hyperthermic effects inside the rat breast tumors in a single exponential trend; (2) the significant changes (P < 0.005) of delta[HbO2] and delta[Hb]total in response to a low dosage of laser irradiation (0.32 W/cm2) have a single exponential increasing trend, similar to that seen in the tumor interior temperature; and (3) the increase in magnitude of delta[HbO2] is nearly two times greater than that of delta[Hb]total, suggesting that photoirradiation may enhance tumor vascular oxygenation. The last observation may be important to reveal the hidden mechanism of photoirradiation on tumors, leading to improvement of tumor treatment efficiency.  相似文献   
74.
75.
76.
77.
Polypyrrole (PPy) nanotubes were readily fabricated through chemical oxidation polymerization in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse (water-in-oil) emulsions. The reverse cylindrical micelle phase was characterized, and the key factors affecting the formation of PPy nanotubes were systematically inspected. AOT reverse cylindrical micelles were prepared via a cooperative interaction between an aqueous FeCl3 solution and AOT in an apolar solvent. In the H2O/FeCl3/AOT/apolar solvent system, the aqueous FeCl3 solution played a role in increasing the ionic strength and decreasing the second critical micelle concentration of AOT. As a result, AOT reverse cylindrical micelles could be spontaneously formed in an apolar solvent. In addition, iron cations were adsorbed to the anionic AOT headgroups that were capable of extracting metal cations from the aqueous core. Under these conditions, the addition of pyrrole monomer resulted in the chemical oxidation polymerization of the corresponding monomer at the surface of AOT reverse cylindrical micelles, followed by the formation of tubular PPy nanostructures. In a typical composition (74.0 wt % hexane, 22.4 wt % AOT, and 3.6 wt % aqueous FeCl3 solution at 15 degrees C), the average diameter of PPy nanotubes was approximately 94 nm and their length was more than 2 mum. The PPy nanotube dimensions were affected by synthetic variables such as the weight ratio of aqueous FeCl3 solution/AOT, type of apolar solvent, and reaction temperature. Moreover, the relationship between the diameter and the conductivity of the nanotubes was investigated.  相似文献   
78.
The lower rim functionalized hexahomotrioxacalix[3]arene triamide 4 with cone-conformation was synthesized from triol 1 by a stepwise reaction. The different extractability for alkali metal ions, transition metal ions, and alkyl ammonium ions from water into dichloromethane is discussed. Due to the strong intramolecular hydrogen bonding between the neighboring NH and CO groups in triamide 4, its affinity to metal cations was weakened. Triamide 4 shows a single selectivity to n-BuNH 3 + . The anion complexation of triamide 4 was also studied by 1H NMR titration experiments. Triamide 4 binds halides through the intermolecular hydrogen bonding among the NH hydrogens of amide in a 1:1 fashion in CDCl3. The association constants calculated from these changes in chemical shifts of the amide protons are K a = 223 M?1 for Cl? and K a = 71.7 M?1 for Br?. Triamide 4 shows a preference for Cl? complexation than Br? complexation.  相似文献   
79.
The neutral cluster beam deposition (NCBD) method has been applied to produce and characterize organic thin-film transistors (OTFTs) based upon tetracene and pentacene molecules as active layers. Organic thin films were prepared by the NCBD method on hexamethyldisilazane (HMDS)-untreated and -pretreated silicon dioxide (SiO2) substrates at room temperature. The surface morphology and structures for the tetracene and pentacene thin films were examined by atomic force microscopy (AFM) and X-ray diffraction (XRD). The measurements demonstrate that the weakly bound and highly directional neutral cluster beams are efficient in producing high-quality single-crystalline thin films with uniform, smooth surfaces and that SiO2 surface treatment with HMDS enhances the crystallinity of the pentacene thin-film phase. Tetracene- and pentacene-based OTFTs with the top-contact structure showed typical source-drain current modulation behavior with different gate voltages. Device parameters such as hole carrier mobility, current on/off ratio, threshold voltage, and subthreshold slope have been derived from the current-voltage characteristics together with the effects of surface treatment with HMDS. In particular, the high field-effect room-temperature mobilities for the HMDS-untreated OTFTs are found to be comparable to the most widely reported values for the respective untreated tetracene and pentacene thin-film transistors. The device performance strongly correlates with the surface morphology, and the structural properties of the organic thin films are discussed.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号