首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1026篇
  免费   34篇
  国内免费   9篇
化学   743篇
晶体学   17篇
力学   20篇
数学   50篇
物理学   239篇
  2024年   2篇
  2023年   11篇
  2022年   22篇
  2021年   33篇
  2020年   20篇
  2019年   22篇
  2018年   15篇
  2017年   16篇
  2016年   32篇
  2015年   31篇
  2014年   40篇
  2013年   76篇
  2012年   92篇
  2011年   90篇
  2010年   63篇
  2009年   38篇
  2008年   77篇
  2007年   58篇
  2006年   57篇
  2005年   62篇
  2004年   41篇
  2003年   36篇
  2002年   37篇
  2001年   20篇
  2000年   18篇
  1999年   14篇
  1998年   9篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   1篇
  1993年   4篇
  1992年   8篇
  1991年   1篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有1069条查询结果,搜索用时 15 毫秒
31.
This paper presents a review of our current experimental research on GaP nanowires grown by a vapor deposition method. Their structural, electrical, opto-electric transport, and gas-adsorption properties are reviewed. Our structural studies showed that a GaP nanowire consisted of a core–shell structure with a single-crystalline GaP core and an outer Ga2O3 layer. The individual GaP nanowires exhibited n-type field effects. Their electron mobilities were in the range of about 6 to 22 cm2/V s at room temperature. When the nanowires were illuminated with an ultraviolet light source, an abrupt increase of conductance occurred resulting from carrier generation in the nanowire and de-adsorption of adsorbed OH- or O2 - ions on the Ga2O3 surface shell. Using an intrinsic Ga2O3 shell layer as a gate dielectric, top-gated GaP nanowire field-effect transistors were fabricated and characterized. Like other metal oxide nanowires, the carrier concentration and mobility of GaP nanowires were significantly affected by the surface molecular adsorption of OH or O2. The GaP nanowire devices were fabricated as sensors for NO2, NH3, and H2 gases by using a simple metal decoration technique. PACS 73.63.-b; 72.80.Ey; 85.35.-p  相似文献   
32.
33.
A novel measurement method of temperature based on the phenomena that the phase difference between principle polarization states in the optical retarder is function of temperature is described. The polarization state of optical beam is changed as it passes through the optical retarder, which depends on the temperature. The temperature of optical retarder is determined by comparison of the power difference between principal polarization states. We demonstrate successfully the temperature measurement by using a polarization maintaining fiber as the optical retarder. With a 100 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.236 rad/°C and the measurement error was ±0.038°C over the temperature range of −2.6 – +3.4°C. With a 11.5 mm length of the fiber optic retarder, the change rate of phase difference on temperature was 0.021 rad/°C and the measurement error was ±0.79°C over the temperature range of −8.5 – +86.5°C.  相似文献   
34.
We present an interpolating, univariate subdivision scheme which preserves the discrete curvature and tangent direction at each step of subdivision. Since the polygon have a geometric information of some original (in some sense) curve as a discrete curvature, we can expect that the limit curve has the same curvature at each vertex as the control polygon. We estimate the curvature bound of odd vertices and give an error estimate for restoring a curve from sampled vertices on curves.  相似文献   
35.
The electrical characteristics of nylon-6 nanofibers incorporated with TiO2 and Fe3O4 nanoparticles were investigated. The resultant nanofibers exhibited good incorporation of nanoparticles. The impregnated TiO2 and Fe3O4 nanoparticles into the nylon-6 nanofibers were confirmed by high resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray (EDX) spectroscopy studies. The electrical conductivity of the nylon-6 incorporated with TiO2 and Fe3O4 composite nanofibers were higher than that of the pristine nylon-6 nanofibers. The impregnation of TiO2 and Fe3O4 nanoparticles significantly enhanced the electrical property of the composite nanofibers. These polymeric/nanoparticles composite nanofibers structure may open a new direction for future organic electronics.  相似文献   
36.
We present a new strategy to fabricate a monolayer assembly of Br-terminated Co nanoparticles on functionalized Si surfaces by using chemical covalent bonding and microcontact printing method. Self-assembled monolayers (SAMs) of the Co nanoparticles formed on the hydroxyl-terminated Si surface exhibit two-dimensional island networks with locally ordered arrays via covalent linkage between nanoparticles and surface. On the other hand, SAMs of the nanoparticles on the aminopropyl-terminated Si surface show an individual and random distribution over an entire surface. Furthermore, we have fabricated striped architectures of Co nanoparticles using a combination of microcontact printing and covalent linkage. Microcontact printing of octadecyltrichlorosilane and selective covalent linkage between nanoparticles and functionalized Si surfaces lead to a hybrid nanostructure with selectively assembled nanoparticles stripes on the patterned functionalized Si surfaces. PACS 81.07.Ta; 61.46.+w; 81.16.Dn; 81.16.Be; 68.37.Hk; 82.80.Pv  相似文献   
37.
We investigate the effects of a thin AlAs layer with different position and thickness on the optical properties of InAs quantum dots (QDs) by using transmission electron microscopy and photoluminescence (PL). The energy level shift of InAs QD samples is observed by introducing the thin AlAs layer without any significant loss of the QD qualities. The emission peak from InAs QDs directly grown on the 4 monolayer (ML) AlAs layer is blueshifted from that of reference sample by 219 meV with a little increase in FWHM from 42–47 meV for ground state. In contrast, InAs QDs grown under the 4 ML AlAs layer have PL peak a little redshifted to lower energy by 17 meV. This result is related to the interdiffusion of Al atom at the InAs QDs caused by the annealing effect during growing of InAs QDs on AlAs layer.  相似文献   
38.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   
39.
The aim of this study was to remove 5-hydroxymethyl furfural (5-HMF) and furfural, known as fermentation inhibitors, in acid pretreated hydrolysates (APH) obtained from Scenedesmus obliquus using activated carbon. Microwave-assisted pretreatment was used to produce APH containing glucose, xylose, and fermentation inhibitors (5-HMF, furfural). The response surface methodology was applied to optimize key detoxification variables such as temperature (16.5–58.5 °C), time (0.5–5.5 h), and solid–liquid (S-L) ratio of activated carbon (0.6–7.4 w/v%). Three variables showed significant effects on the removal of fermentation inhibitors. The optimum detoxification conditions with the maximum removal of fermentation inhibitors and the minimum loss of sugars (glucose and xylose) were as follows: temperature of 36.6 °C, extraction time of 3.86 h, and S-L ratio of 3.3 w/v%. Under these conditions, removal of 5-HMF, furfural, and sugars were 71.6, 83.1, and 2.44%, respectively, which agreed closely with the predicted values. When the APH and detoxified APH were used for ethanol fermentation by S. cerevisiae, the ethanol produced was 38.5% and 84.5% of the theoretical yields, respectively, which confirmed that detoxification using activated carbon was effective in removing fermentation inhibitors and increasing fermentation yield without significant removal of fermentable sugars.  相似文献   
40.
Two‐dimensional zeolite nanosheets that do not contain any organic structure‐directing agents were prepared from a multilamellar MFI (ML‐MFI) zeolite. ML‐MFI was first exfoliated by melt compounding and then detemplated by treatment with a mixture of H2SO4 and H2O2 (piranha solution). The obtained OSDA‐free MFI nanosheets disperse well in water and can be used for coating applications. Deposits made on porous polybenzimidazole (PBI) supports by simple filtration of these suspensions exhibit an n‐butane/isobutane selectivity of 5.4, with an n‐butane permeance of 3.5×10?7 mol m?2 s?1 Pa?1 (ca. 1000 GPU).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号