首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   16篇
化学   322篇
晶体学   1篇
力学   1篇
数学   41篇
物理学   61篇
  2023年   6篇
  2022年   19篇
  2021年   15篇
  2020年   11篇
  2019年   21篇
  2018年   19篇
  2017年   20篇
  2016年   24篇
  2015年   16篇
  2014年   25篇
  2013年   36篇
  2012年   27篇
  2011年   35篇
  2010年   18篇
  2009年   11篇
  2008年   15篇
  2007年   29篇
  2006年   14篇
  2005年   19篇
  2004年   13篇
  2003年   11篇
  2002年   10篇
  2001年   2篇
  2000年   3篇
  1998年   3篇
  1997年   1篇
  1991年   2篇
  1979年   1篇
排序方式: 共有426条查询结果,搜索用时 15 毫秒
11.
We propose a fully ab initio approach to calculate electron-phonon scattering times for excited electrons interacting with short-wavelength (intervalley) phonons in semiconductors. Our approach is based on density functional perturbation theory and on the direct integration of electronic scattering probabilities over all possible final states with no ad hoc assumptions. We apply it to the deexcitation of hot electrons in GaAs, and calculate the lifetime of the direct exciton in GaP, both in excellent agreement with experiments. Matrix elements of the electron-phonon coupling, and their dependence on the wave vector of the final state and on the phonon modes, are shown to be crucial ingredients of the evaluation of electron-phonon scattering times.  相似文献   
12.
The selective hydrolysis of proteins by non-enzymatic catalysis is difficult to achieve, yet it is crucial for applications in biotechnology and proteomics. Herein, we report that discrete hafnium metal-oxo cluster [Hf18O10(OH)26(SO4)13⋅(H2O)33] ( Hf18 ), which is centred by the same hexamer motif found in many MOFs, acts as a heterogeneous catalyst for the efficient hydrolysis of horse heart myoglobin (HHM) in low buffer concentrations. Among 154 amino acids present in the sequence of HHM, strictly selective cleavage at only 6 solvent accessible aspartate residues was observed. Mechanistic experiments suggest that the hydrolytic activity is likely derived from the actuation of HfIV Lewis acidic sites and the Brønsted acidic surface of Hf18 . X-ray scattering and ESI-MS revealed that Hf18 is completely insoluble in these conditions, confirming the HHM hydrolysis is caused by a heterogeneous reaction of the solid Hf18 cluster, and not from smaller, soluble Hf species that could leach into solution.  相似文献   
13.
Mapping microviscosity, temperature, and polarity in biosystems is an important capability that can aid in disease detection. This can be achieved using fluorescent sensors based on a green-emitting BODIPY group. However, red fluorescent sensors are desired for convenient imaging of biological samples. It is known that phenyl substituents in the β position of the BODIPY core can shift the fluorescence spectra to longer wavelengths. In this research, we report how electron-withdrawing (EWG) and -donating (EDG) groups can change the spectral and sensory properties of β-phenyl-substituted BODIPYs. We present a trifluoromethyl-substituted (EWG) conjugate with moderate temperature sensing properties and a methoxy-substituted (EDG) molecule that could be used as a lifetime-based polarity probe. In this study, we utilise experimental results of steady-state and time-resolved fluorescence, as well as quantum chemical calculations using density functional theory (DFT). We also explain how the energy barrier height (Ea) for non-radiative relaxation affects the probe’s sensitivity to temperature and viscosity and provide appropriate Ea ranges for the best possible sensitivity to viscosity and temperature.  相似文献   
14.
Honey is a natural product that is considered globally one of the most widely important foods. Various studies on authenticity detection of honey have been fulfilled using visible and near-infrared (Vis-NIR) spectroscopy techniques. However, there are limited studies on stingless bee honey (SBH) despite the increase of market demand for this food product. The objective of this work was to present the potential of Vis-NIR absorbance spectroscopy for profiling, classifying, and quantifying the adulterated SBH. The SBH sample was mixed with various percentages (10–90%) of adulterants, including distilled water, apple cider vinegar, and high fructose syrup. The results showed that the region at 400–1100 nm that is related to the color and water properties of the samples was effective to discriminate and quantify the adulterated SBH. By applying the principal component analysis (PCA) on adulterants and honey samples, the PCA score plot revealed the classification of the adulterants and adulterated SBHs. A partial least squares regression (PLSR) model was developed to quantify the contamination level in the SBH samples. The general PLSR model with the highest coefficient of determination and lowest root means square error of cross-validation (RCV2=0.96 and RMSECV=5.88 %) was acquired. The aquaphotomics analysis of adulteration in SBH with the three adulterants utilizing the short-wavelength NIR region (800–1100 nm) was presented. The structural changes of SBH due to adulteration were described in terms of the changes in the water molecular matrix, and the aquagrams were used to visualize the results. It was revealed that the integration of NIR spectroscopy with aquaphotomics could be used to detect the water molecular structures in the adulterated SBH.  相似文献   
15.
Molecular rotors are a class of fluorophores that enable convenient imaging of viscosity inside microscopic samples such as lipid vesicles or live cells. Currently, rotor compounds containing a boron-dipyrromethene (BODIPY) group are among the most promising viscosity probes. In this work, it is reported that by adding heavy-electron-withdrawing −NO2 groups, the viscosity-sensitive range of a BODIPY probe is drastically expanded from 5–1500 cP to 0.5–50 000 cP. The improved range makes it, to our knowledge, the first hydrophobic molecular rotor applicable not only at moderate viscosities but also for viscosity measurements in highly viscous samples. Furthermore, the photophysical mechanism of the BODIPY molecular rotors under study has been determined by performing quantum chemical calculations and transient absorption experiments. This mechanism demonstrates how BODIPY molecular rotors work in general, why the −NO2 group causes such an improvement, and why BODIPY molecular rotors suffer from undesirable sensitivity to temperature. Overall, besides reporting a viscosity probe with remarkable properties, the results obtained expand the general understanding of molecular rotors and show a way to use the knowledge of their molecular action mechanism for augmenting their viscosity-sensing properties.  相似文献   
16.
In this work we theoretically investigate a possibility to use cubic nitride based multi-layer periodic nanostructure as a semiconductor metamaterial. The structure design is based on an active region of a quantum cascade laser optimized to achieve optical gain in the Terahertz (THz) spectral range. In particular, we test the GaN/AlGaN quantum well configurations, which should exhibit important advantages compared to GaAs-based structures, namely room temperature operation without the assistance of magnetic field and lower doping densities. Our numerical rate-equations model is solved self-consistently and it takes into account electron-longitudinal optical phonon scattering between all the relevant states among the adjacent periods of the structure. A global optimization routine, specifically genetic algorithm is then used to generate new gain-optimized structures. This work confirms the advantages of cubic GaN designs over GaAs ones, namely feasibility of negative refraction at room temperature without the assistance of magnetic field while keeping the doping densities of the same order of magnitude.  相似文献   
17.
Structural Chemistry - Epinephrine (Epi) is a physiologically important catecholamine. Molecular conformation of Epi controls the interactions with other molecules and its biological effects. There...  相似文献   
18.
Optical sectioning in wide-field microscopy is achieved by illumination of the object with a continuously moving single-spatial-frequency pattern and detecting the image with a smart pixel detector array. This detector performs an on-chip electronic signal processing that extracts the optically sectioned image. The optically sectioned image is directly observed in real time without any additional postprocessing.  相似文献   
19.
In this work we synthesized new monofunctional gold(III) complex [Au(Cl-Ph-tpy)Cl]Cl2 (Cl-Ph-tpy = 4′-[4-chlorophenyl]-2,2′:6′, 2″-terpyridine). This complex was characterized by UV–Vis, NMR, IR, and ESI-MS spectrometry. The kinetic study of the substitution reactions of the Au-Cl-Ph-tpy complex with biomolecules showed that the rate constants depend on the nature of the entering nucleophile. Based on the calculated values of entropy (∆H > 0) and enthalpy (∆S < 0) the proposed substitution mechanism is associative. Additionally, the relative stability and thermodynamic properties of Au-Cl-Ph-tpy complex were compared with the analogue Au-tpy complex by the B3LYP/def2-svp method. DNA/BSA binding studies showed that Au-Cl-Ph-tpy complex interacts with CT DNA through the intercalation and moderately quenches the fluorescence of tryptophan residues in serum albumin (BSA). Molecular docking confirmed results obtained by spectroscopic experiments and suggested site I (subdomain IIA) for binding of Au complex to BSA. We demonstrated that the Au chlorophenyl terpyridine complex possessed significant in vitro cytotoxic activity against human oral squamous carcinoma cells (CAL-27), induced apoptosis, inhibited proliferation of CAL-27 cells, and induced cell cycle disturbance. Treatment of CAL-27 cells with the Au complex enhanced expression of cyclin-dependent kinase inhibitors p21 and p27, resulting in cell cycle arrest in the G1 phase, reduced the percentage of CAL-27 cells in S phase and decreased expression of Ki-67. Additionally, Au complex reduced expression of phosphorylated STAT3 and downstream regulated molecules associated with cancer stemness, NANOG, and Sox2 protein.  相似文献   
20.
Cascade reactions of internal and terminal alkynes, zirconocene hydrochloride, dimethylzinc, and phosphinoyl imines (prepared in one step from aldehydes and diphenylphosphinoyl amide) lead to allylic phosphinoyl amides after aqueous workup. Microwave acceleration allows the completion of this one-pot reaction sequence in 10 min. These allylic amides can be converted into a variety of derivatives, including carbamates and sulfonamides, or reacted prior to workup with diiodomethane to give novel C-cyclopropylalkylamides. A solution-phase "libraries from libraries" approach was used to generate an intermediate 20-member library which was subsequently expanded to a 100-member library by a series of N-functionalizations. The biological activity was evaluated in an assay for competitive binding to the estrogen receptor (ERalpha), revealing three potent lead compounds of a new structural type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号