首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   8篇
化学   305篇
晶体学   6篇
力学   8篇
数学   22篇
物理学   156篇
  2023年   4篇
  2021年   8篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2014年   5篇
  2013年   9篇
  2012年   21篇
  2011年   14篇
  2010年   17篇
  2009年   11篇
  2008年   17篇
  2007年   35篇
  2006年   26篇
  2005年   25篇
  2004年   21篇
  2003年   15篇
  2002年   25篇
  2001年   12篇
  2000年   25篇
  1999年   12篇
  1998年   11篇
  1997年   11篇
  1996年   9篇
  1995年   11篇
  1994年   17篇
  1993年   23篇
  1992年   11篇
  1991年   17篇
  1990年   7篇
  1989年   6篇
  1988年   10篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1968年   1篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
431.
432.
433.
Method development of enantiomeric separations in capillary electrophoresis (CE) is a time-consuming task, since finding the appropriate chiral selector is usually a "trial and error" process. It is impossible to predict the selectivity of a selector towards a certain enantiomer. Therefore, the affinity of all selectors has to be examined one at a time. In order to speed up this process, a strategy is proposed based on simple experimental design methodology. The approach includes first a screening in function of the pH to determine the optimal migration conditions followed by a selection of the right chiral selector by means of Taguchi designs. In the approach several variables, such as the type and concentration of cyclodextrin, the concentration of buffer electrolyte, and the percentage of organic modifier, are varied simultaneously to find initial separation conditions rapidly. The resulting initial separation conditions can be optimized in further steps to be more reproducible. We discuss the results of the approach when applied on a number of selected compounds that are recently in development at Johnson & Johnson--Pharmaceutical Research and Development. Parameters, such as quality of the separation and analysis time, are evaluated to determine initial separation conditions for each compound.  相似文献   
434.
In earlier work on the room temperature oxidation of C2H2 by O atoms, two distinct sources of methylene radicals have been identified: (i) direct, primary production via channel 1b of the C2H2 + O reaction, and (ii) delayed formation via the secondary reaction 3 involving the products HCCO and H of the other primary channel 1a: Presently, it was confirmed by a detailed sensitivity analysis that the precise shapes of the resulting total methylene concentration-versus-time profiles in C2H2/O systems depend strongly on the k1a/k1b branching ratio. Along that line, the important parameter k1a/k1b was determined from relative CH2 concentration-versus-time profiles measured in a variety of C2H2/O/H systems using Discharge Flow-Molecular Beam sampling Mass Spectrometry techniques (DF-MBMS). The data analysis was carried out by deductive kinetic modelling; the method, as applied to profile shapes, is discussed at length. Via this novel, independent approach, the CH2(3B1) yield of the two-channel C2H2 + O reaction was determined to be k1b/k1 = 0.17 ± 0.08. The indicated 2σ error includes possible systematic errors due to uncertainties in the rate constants of other reactions that influence the shapes of the CH2 profiles. The present result, which translates to an HCCO yield k1a/k1 = 0.83 ± 0.08, is in excellent agreement with other recent determinations. The above mechanism, with the subsequent reactions that it initiates, also reproduces the measured absolute [C2H2], [O], and [H] profiles with an average accuracy of 5%, thus validating the consistency of the C2H2/O/H reaction model put forward here. © 1994 John Wiley & Sons, Inc.  相似文献   
435.
436.
437.
Aerobic oxidation of toluene (PhCH3) is investigated by complementary experimental and theoretical methodologies. Whereas the reaction of the chain‐carrying benzylperoxyl radicals with the substrate produces predominantly benzyl hydroperoxide, benzyl alcohol and benzaldehyde originate mainly from subsequent propagation of the hydroperoxide product. Nevertheless, a significant fraction of benzaldehyde is also produced in primary PhCH3 propagation, presumably via proton rather than hydrogen transfer. An equimolar amount of benzyl alcohol, together with benzoic acid, is additionally produced in the tertiary propagation of PhCHO with benzylperoxyl radicals. The “hot” oxy radicals generated in this step can also abstract aromatic hydrogen atoms from PhCH3, and this results in production of cresols, known inhibitors of radical‐chain reactions. The very fast benzyl peroxyl‐initiated co‐oxidation of benzyl alcohol generates HO2. radicals, along with benzaldehyde. This reaction also causes a decrease in the overall oxidation rate, due to the fast chain‐terminating reaction of HO2. with the benzylperoxyl radicals, which causes a loss of chain carriers. Moreover, due to the fast equilibrium PhCH2OOH+HO2.?PhCH2OO.+H2O2, and the much lower reactivity of H2O2 compared to PhCH2OOH, the fast co‐oxidation of the alcohol means that HO2. gradually takes over the role of benzylperoxyl as principal chain carrier. This drastically changes the autoxidation mechanism and, among other things, causes a sharp decrease in the hydroperoxide yield.  相似文献   
438.
439.
440.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号