首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   7篇
化学   305篇
晶体学   6篇
力学   8篇
数学   22篇
物理学   156篇
  2023年   4篇
  2021年   8篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2014年   5篇
  2013年   9篇
  2012年   21篇
  2011年   14篇
  2010年   17篇
  2009年   11篇
  2008年   17篇
  2007年   35篇
  2006年   26篇
  2005年   25篇
  2004年   21篇
  2003年   15篇
  2002年   25篇
  2001年   12篇
  2000年   25篇
  1999年   12篇
  1998年   11篇
  1997年   11篇
  1996年   9篇
  1995年   11篇
  1994年   17篇
  1993年   23篇
  1992年   11篇
  1991年   17篇
  1990年   7篇
  1989年   6篇
  1988年   10篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1968年   1篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
421.
The thermal reaction of olefins with nitrous oxide was recently put forward as a promising synthetic ketone source. The 1,3-dipolar cycloaddition of N(2)O to the C=C double bond, forming a 4,5-dihydro-[1,2,3]oxadiazole intermediate, was predicted to be the first elementary reaction step. This oxadiazole can subsequently decompose to the desired carbonyl product and N(2)via a hydrogen shift. In this contribution, Potential Energy Surfaces are constructed at the reliable G2M level of theory and used to evaluate thermal rate constants by Transition State Theory. Compelling theoretical and experimental evidence is presented that an oxadiazole intermediate not only can undergo a hydrogen shift, but eventually also a methyl- or even an alkyl-shift. Special emphasis is also given on a hitherto neglected decomposition of the oxadiazole via a concerted C-C and N-O cleavage. For some substrates, such as internal olefins, this diazo route is negligibly slow, compared to the ketone path, leaving no marks on the selectivity. For cyclopentene the diazo cleavage was however found to be nearly as fast as the desired ketone route. However, the diazo compound, viz. 5-diazopentanal, reconstitutes the oxadiazole much faster upon ring-closure than it is converted to side-products. Therefore, a pre-equilibrium between the diazoalkanal and the oxadiazole is established, explaining the high ketone yield. On the other hand, for primary alkenes, such a concerted C-C and N-O cleavage to diazomethane is identified as an important side reaction, producing aldehydes with the loss of one C-atom. For these substrates, the bimolecular back-reaction of the C(n-1) aldehyde and diazomethane is too slow to sustain an equilibrium with the oxadiazole; diazomethane rather reacts with the substrate to form cyclopropane derivatives. The overall selectivity is thus determined by a combination of H-, methyl- or alkyl-shift, and the eventual impact of a diazo cleavage in the oxadiazole intermediate.  相似文献   
422.
In this contribution, the formation and immobilisation of chromium(iii) hydroxyoxide colloids is investigated. Nano-sized Cr(iii) colloids are generated in situ upon reduction of Cr(vi), dosed to a stirred reactor. The growth of the elementary colloids by the consumption of solved Cr is kinetically unfavorable compared to their aggregation to larger secondary particles, the size of which depends on the concentration of the building block colloids. This aggregation process can be steered by simple process parameters such as dosing rate and concentration of the Cr(vi). The Cr(iii) colloids are immobilised in situ on a support material via precipitation chromatography. Upon drying, the initially amorphose hydroxyoxides are gradually transformed into crystalline Cr(2)O(3) nanoparticles, mainly located at the external surface of the support. This approach opens new opportunities for the synthesis of supported metal oxide catalysts.  相似文献   
423.
Aerobic oxidation of toluene (PhCH3) is investigated by complementary experimental and theoretical methodologies. Whereas the reaction of the chain‐carrying benzylperoxyl radicals with the substrate produces predominantly benzyl hydroperoxide, benzyl alcohol and benzaldehyde originate mainly from subsequent propagation of the hydroperoxide product. Nevertheless, a significant fraction of benzaldehyde is also produced in primary PhCH3 propagation, presumably via proton rather than hydrogen transfer. An equimolar amount of benzyl alcohol, together with benzoic acid, is additionally produced in the tertiary propagation of PhCHO with benzylperoxyl radicals. The “hot” oxy radicals generated in this step can also abstract aromatic hydrogen atoms from PhCH3, and this results in production of cresols, known inhibitors of radical‐chain reactions. The very fast benzyl peroxyl‐initiated co‐oxidation of benzyl alcohol generates HO2. radicals, along with benzaldehyde. This reaction also causes a decrease in the overall oxidation rate, due to the fast chain‐terminating reaction of HO2. with the benzylperoxyl radicals, which causes a loss of chain carriers. Moreover, due to the fast equilibrium PhCH2OOH+HO2.?PhCH2OO.+H2O2, and the much lower reactivity of H2O2 compared to PhCH2OOH, the fast co‐oxidation of the alcohol means that HO2. gradually takes over the role of benzylperoxyl as principal chain carrier. This drastically changes the autoxidation mechanism and, among other things, causes a sharp decrease in the hydroperoxide yield.  相似文献   
424.
The lowest-lying triplet and singlet potential energy surfaces for the O(3P) + C6H6 reaction were theoretically characterized using the "complete basis set" CBS-QB3 model chemistry. The primary product distributions for the multistate multiwell reactions on the individual surfaces were then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. It is newly found that electrophilic O-addition onto a carbon atom in benzene can occur in parallel on two triplet surfaces, 3A' and 3A' '; the results predict O-addition to be dominant up to combustion temperatures. Major expected end-products of the addition routes include phenoxy radical + H*, phenol and/or benzene oxide/oxepin, in agreement with the experimental evidence. While c-C6H5O* + H* are nearly exclusively formed via a spin-conservation mechanism on the lowest-lying triplet surface, phenol and/or benzene oxide/oxepin are mainly generated from the lowest-lying singlet surface after inter-system crossing from the initial triplet surface. CO + c-C5H6 are predicted to be minor products in flame conditions, with a yield < or = 5%. The O + C6H6 --> c-C5H5* + *CHO channel is found to be unimportant under all relevant combustion conditions, in contrast with previous theoretical conclusions (J. Phys. Chem. A 2001, 105, 4316). Efficient H-abstraction pathways are newly identified, occurring on two different electronic state surfaces, 3B1 and 3B2, resulting in hydroxyl plus phenyl radicals; they are predicted to play an important role at higher temperatures in hydrocarbon combustion, with estimated contributions of ca. 50% at 2000 K. The overall thermal rate coefficient k(O + C6H6) at 300-800 K was computed using multistate transition state theory: k(T) = 3.7 x 10-16 x T 1.66 x exp(-1830 K/T) cm(3) molecule(-1) s(-1), in good agreement with the experimental data available.  相似文献   
425.
In this letter we describe an efficient synthesis of "psympederin", a hybrid between the novel antitumor natural product psymberin and the blister beetle toxin pederin. Evaluation of antiproliferative activity reveals that the dihydroisocoumarin fragment is important for psymberin toxicity and the cyclic pederate fragment is important for pederin/mycalamide toxicity. On the basis of preliminary results described herein, we speculate that, despite their structural resemblance, psymberin and pederin/mycalamide induce toxicity through different mechanisms. [reaction: see text].  相似文献   
426.
By utilizing a fully floating double electrical probe system, the conductivity of a linear atmospheric pressure plasma jet, utilizing nitrogen as process gas, was measured. The floating probe makes it possible to measure currents in the nanoamp range, in an environment where capacitive coupling of the probes to the powered electrodes is on the order of several kilovolts. Using a chemical kinetic model, the production of reactive nitrogen oxide and hydrogen-containing species through admixture of ambient humid air is determined and compared to the measured gas conductivity. The chemical kinetic model predicts an enhanced diffusion coefficient for admixture of O2 and H2O from ambient air of 2.7 cm2 s?1, compared to a literature value of 0.21 cm2 s?1, which is attributed to rapid mixing between the plasma jets and the surrounding air. The dominant charge carriers contributing to the conductivity, aside from electrons, are NO+, NO2 ? and NO3 ?. Upon admixture of O2 and H2O, the dominant neutral products formed in the N2 plasma jet are O, NO and N2O, while O2(1Δg) singlet oxygen is the only dominant excited species.  相似文献   
427.
428.
C(3)-symmetrical disks 1, preorganized by acylated 2,2'-bipyridine-3,3'-diamine moieties and decorated with nine identical chiral, lipophilic tails, aggregate into a dynamic helix in apolar solvents. The aggregates, previously shown to be governed by the "sergeants-and-soldiers" principle when mixed with achiral analogues, are now also revealed to obey the "majority-rules" effect, a phenomenon not earlier observed in nonpolymers. Our experimental circular dichroism data can be accurately described with a recently developed theory. A fit of the theory to the experimental results shows that the mismatch penalty, i.e., the free energy of a monomer present in a helix of its nonpreferred screw sense (0.94 kJ/mol), is about 8 times lower than the penalty for a helix reversal (7.8 kJ/mol). This corresponds well to our vision of the supramolecular architecture of the disks.  相似文献   
429.
Summary: The combination of enzymatic polymerization with ATRP for the synthesis of branched (block) copolymers was investigated. Heterotelechelic polycaprolactone macroinimer was synthesized in a one‐pot enzymatic procedure by using 2‐hydroxyethyl α‐bromoisobutyrate as a bifunctional initiator. A polymerizable end group was introduced by subsequent in situ enzymatic acrylation with vinyl acrylate. Branched polymers were obtained by subsequent atom transfer radical polymerization (ATRP).

Enzymatic synthesis of heterotelechelic macromonomers and subsequent self condensing vinyl polymerization by ATRP.  相似文献   

430.
The properties of nanocomposites of biodegradable polycaprolactone containing zinc oxide (ZnO) nanoparticles with diverse morphologies, that is, ZnO nanospheres, nanorods, and nanodisks are investigated. It is demonstrated for the first time that the dual action of the ZnO nanoparticles reduces the gas permeability of the nanocomposites via two mechanisms: first by the creation of a tortuous path and second by gas adsorption. Depending on the morphology of the particles, the oxygen permeability can be reduced by more than 60%. Tensile tests show that the nanocomposites remain very ductile. The nominal strain for all nanocomposites is higher than 500% before fracture occurs. The Young's modulus and tensile strength of the nanocomposites increase at higher ZnO concentrations. This behavior is more pronounced in the case of ZnO nanorods. As a result, the incorporation of ZnO nanoparticles into (bio)polymers provides an opportunity to manufacture polymer‐based nanocomposite materials, resulting in the production of high‐performance (bio)packaging. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号