首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1026篇
  免费   7篇
  国内免费   16篇
化学   648篇
晶体学   8篇
力学   45篇
数学   148篇
物理学   200篇
  2023年   3篇
  2022年   14篇
  2021年   14篇
  2020年   8篇
  2019年   13篇
  2018年   12篇
  2017年   8篇
  2016年   16篇
  2015年   17篇
  2014年   29篇
  2013年   59篇
  2012年   59篇
  2011年   63篇
  2010年   42篇
  2009年   37篇
  2008年   63篇
  2007年   71篇
  2006年   64篇
  2005年   57篇
  2004年   66篇
  2003年   51篇
  2002年   39篇
  2001年   17篇
  2000年   11篇
  1999年   13篇
  1998年   11篇
  1997年   20篇
  1996年   10篇
  1995年   11篇
  1994年   14篇
  1993年   7篇
  1992年   6篇
  1991年   11篇
  1990年   5篇
  1989年   9篇
  1988年   3篇
  1987年   4篇
  1985年   8篇
  1984年   6篇
  1983年   12篇
  1982年   12篇
  1981年   7篇
  1980年   8篇
  1978年   7篇
  1977年   5篇
  1976年   4篇
  1975年   6篇
  1973年   3篇
  1967年   2篇
  1866年   2篇
排序方式: 共有1049条查询结果,搜索用时 15 毫秒
31.
32.
Pons  Arion  Beatus  Tsevi 《Nonlinear dynamics》2022,108(3):2045-2074

Minimising the energy consumption associated with periodic motion is a priority common to a wide range of technologies and organisms. These include many forms of biological and biomimetic propulsion system, such as flying insects. Linear and nonlinear elasticity can play an important role in optimising the energetic behaviour of these systems, via linear or nonlinear resonance. However, existing methods for computing energetically optimal nonlinear elasticities struggle when actuator energy regeneration is imperfect: when the system cannot reuse work performed on the actuator, as occurs in many realistic systems. Here, we develop a new analytical method that overcomes these limitations. Our method provides exact nonlinear elasticities minimising the mechanical power consumption required to generate a target periodic response, under conditions of imperfect energy regeneration. We demonstrate how, in general parallel- and series-elastic actuation systems, imperfect regeneration can lead to a set of non-unique optimal nonlinear elasticities. This solution space generalises the energetic properties of linear resonance, and is described completely via bounds on the system work loop: the elastic-bound conditions. The choice of nonlinear elasticities from within these bounds leads to new tools for systems design, with particular relevance to biomimetic propulsion systems: tools for controlling the trade-off between actuator peak power and duty cycle; for using unidirectional actuators to generate energetically optimal oscillations; and further. More broadly, these results lead to new perspectives on the role of nonlinear elasticity in biological organisms, and new insights into the fundamental relationship between nonlinear resonance, nonlinear elasticity, and energetic optimality.

  相似文献   
33.
Today, the palindromic analysis of biological sequences, based exclusively on the study of “mirror” symmetry properties, is almost unavoidable. However, other types of symmetry, such as those present in friezes, could allow us to analyze binary sequences from another point of view. New tools, such as symmetropy and symmentropy, based on new types of palindromes allow us to discriminate binarized 1/f noise sequences better than Lempel–Ziv complexity. These new palindromes with new types of symmetry also allow for better discrimination of binarized DNA sequences. A relative error of 6% of symmetropy is obtained from the HUMHBB and YEAST1 DNA sequences. A factor of 4 between the slopes obtained from the linear fits of the local symmentropies for the two DNA sequences shows the discriminative capacity of the local symmentropy. Moreover, it is highlighted that a certain number of these new palindromes of sizes greater than 30 bits are more discriminating than those of smaller sizes assimilated to those from an independent and identically distributed random variable.  相似文献   
34.
Vetiver (Chrysopogon zizanioides (L.) Roberty) is a major tropical perfume crop. Access to its essential oil (EO)-filled roots is nevertheless cumbersome and land-damaging. This study, therefore, evaluated the potential of vetiver cultivation under soilless high-pressure aeroponics (HPA) for volatile organic compound (VOC) production. The VOC accumulation in the roots was investigated by transmission electron microscopy, and the composition of these VOCs was analyzed by gas chromatography coupled with mass spectrometry (GC/MS) after sampling by headspace solid-phase microextraction (HS-SPME). The HPA-grown plants were compared to plants that had been grown in potting soil and under axenic conditions. The HPA-grown plants were stunted, demonstrating less root biomass than the plants that had been grown in potting soil. The roots were slender, thinner, more tapered, and lacked the typical vetiver fragrance. HPA cultivation massively impaired the accumulation of the less-volatile hydrocarbon and oxygenated sesquiterpenes that normally form most of the VOCs. The axenic, tissue-cultured plants followed a similar and more exacerbated trend. Ultrastructural analyses revealed that the HPA conditions altered root ontogeny, whereby the roots contained fewer EO-accumulating cells and hosted fewer and more immature intracellular EO droplets. These preliminary results allowed to conclude that HPA-cultivated vetiver suffers from altered development and root ontology disorders that prevent EO accumulation.  相似文献   
35.
We investigate globally hyperbolic 3-dimensional AdS manifolds containing “particles”, i.e., cone singularities of angles less than 2π along a time-like graph Γ. To each such space (equipped with a time-like vector field satisfying some additional properties) we associate a graph and a finite family of pairs of hyperbolic surfaces with cone singularities. We show that this data is sufficient to recover the space locally (i.e., in the neighborhood of a fixed metric). This is a partial extension of a result of Mess for non-singular globally hyperbolic AdS manifolds.  相似文献   
36.
The glucosinolates sinalbin and glucoraphanin were purified by strong ion-exchange displacement centrifugal partition chromatography (SIXCPC). The optimized conditions involved the biphasic solvent system ethyl acetate/n-butanol/water (3:2:5, v/v), the lipophilic anion-exchanger Aliquat 336 (trioctylmethylammonium chloride, 160 and 408 mM) and a sodium iodide solution (80 and 272 mM) as displacer. Amounts as high as 2.4 g of sinalbin and 2.6g of glucoraphanin were obtained in one step in 2.5 and 3.5h respectively, starting from 12 and 25 g of mustard and broccoli seed aqueous extracts, using a laboratory scale CPC column (200 mL inner volume).  相似文献   
37.
38.
Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.  相似文献   
39.
 The interaction of a nonionic polymeric surfactant with an anionic surfactant at the oil–water interface has been studied by its effects on the droplet size, stability and rheology of emulsions. Oil-in-water (o/w) emulsions were prepared using isoparaffinic oil and mixtures of a nonionic polymeric surfactant with an anionic surfactant. The macro-molecular surfactant was a graft copolymer with a backbone of polymethyl methacrylate and grafted polyethylene oxide (a graft copolymer with PEO chains of MW=750). The anionic surfactant was sodium dodecyl sulfate (SDS). The stabiliza-tion of the emulsion droplets was found to be different when using one or the other surfactant. The mechanism of stabilization of emulsion droplets by the macro-molecular surfactant is of the steric type while the stabilization by anionic surfactant is of the electrostatic repulsion type. Emulsions stabilized with mixtures present both types of stabilization. Other effects on the preparation and stabilization of emulsions were found to be dependent on properties associated with the surfactant molecular weight such as the Marangoni effect and Gibbs elasticity. The initial droplet size of the emulsions showed a synergistic effect of the surfactant combination, showing a minimum for the mixtures compared to the pure components. Emulsion stability also shows a synergistic interaction of both surfactants. Rheological measurements allow for the estimation of the interparticle interaction when measured as a function of volume fraction. Most of the effects observed can be attributed to the differences in interfacial tension and droplet radius produced by both surfactants and their mixtures. The elastic moduli are well explained on the basis of droplet deformation. Ionic versus steric stabilization produce little difference in the observed rheology, the only important differences observed concerned the extent of the linear viscoelasticity region. Received: 22 November 1996 Accepted: 24 March 1997  相似文献   
40.
Cardiovascular diseases (CVDs) are considered as a major cause of death worldwide. Therefore, identifying and developing therapeutic strategies to treat and reduce the prevalence of CVDs is a major medical challenge. Several drugs used for the treatment of CVDs, such as captopril, emerged from natural products, namely snake venoms. These venoms are complex mixtures of bioactive molecules, which, among other physiological networks, target the cardiovascular system, leading to them being considered in the development and design of new drugs. In this review, we describe some snake venom molecules targeting the cardiovascular system such as phospholipase A2 (PLA2), natriuretic peptides (NPs), bradykinin-potentiating peptides (BPPs), cysteine-rich secretory proteins (CRISPs), disintegrins, fibrinolytic enzymes, and three-finger toxins (3FTXs). In addition, their molecular targets, and mechanisms of action—vasorelaxation, inhibition of platelet aggregation, cardioprotective activities—are discussed. The dissection of their biological effects at the molecular scale give insights for the development of future snake venom-derived drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号