首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   2篇
  国内免费   16篇
化学   484篇
晶体学   2篇
力学   35篇
数学   142篇
物理学   142篇
  2023年   2篇
  2022年   13篇
  2021年   12篇
  2020年   8篇
  2019年   8篇
  2018年   11篇
  2017年   7篇
  2016年   11篇
  2015年   10篇
  2014年   21篇
  2013年   48篇
  2012年   47篇
  2011年   54篇
  2010年   38篇
  2009年   29篇
  2008年   48篇
  2007年   58篇
  2006年   49篇
  2005年   39篇
  2004年   53篇
  2003年   35篇
  2002年   30篇
  2001年   9篇
  2000年   8篇
  1999年   9篇
  1998年   8篇
  1997年   15篇
  1996年   7篇
  1995年   12篇
  1994年   10篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   11篇
  1981年   5篇
  1980年   6篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1967年   2篇
排序方式: 共有805条查询结果,搜索用时 15 毫秒
1.
We introduce a hyperbolic entropy-consistent model to describe three-phase flows, which ensures that void fractions, mass fractions and pressures remain positive through single waves occurring in the one dimensional solution of the Riemann problem. To cite this article: J.-M. Hérard, C. R. Acad. Sci. Paris, Ser. I 342 (2006).  相似文献   
2.
Closure laws for interfacial pressure and interfacial velocity are proposed within the frame work of two-pressure two-phase flow models. These enable us to ensure positivity of void fractions, mass fractions and internal energies when investigating field by field waves in the Riemann problem. To cite this article: F. Coquel et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 927–932.  相似文献   
3.
We show that, among area contracting embeddings of the 2-disk, infinitely renormalizable maps with a bounded geometry either have positive topological entropy or correspond to a cascade of period doubling.

  相似文献   

4.
Textile scaffolds that are either 2D or 3D with tunable shapes and pore sizes can be made through textile processing (weaving, knitting, braiding, nonwovens) using microfilaments. However, these filaments lack nano-topographical features to improve bone cell adhesion and proliferation. Moreover, the diameter of such filaments should be higher than that used for classical textiles (10–30 µm) to enable adhesion and the efficient spreading of the osteoblast cell (>30 µm diameter). We report, for the first time, the fabrication of biodegradable nanostructured cylindrical PLLA (poly-L-Lactic acid) microfilaments of diameters 100 µm and 230 µm, using a single step melt-spinning process for straightforward integration of nano-scale ridge-like structures oriented in the fiber length direction. Appropriate drawing speed and temperature used during the filament spinning allowed for the creation of instabilities giving rise to nanofibrillar ridges, as observed by AFM (Atomic Force Microscopy). These micro-filaments were hydrophobic, and had reduced crystallinity and mechanical strength, but could still be processed into 2D/3D textile scaffolds of various shapes. Biological tests carried out on the woven scaffolds made from these nano-structured micro filaments showed excellent human bone cell MG 63 adhesion and proliferation, better than on smooth 30 µm- diameter fibers. Elongated filopodia of the osteoblast, intimately anchored to the nano-structured filaments, was observed. The filaments also induced in vitro osteogenic expression, as shown by the expression of osteocalcin and bone sialoprotein after 21 days of culture. This work deals with the fabrication of a new generation of nano-structured micro-filament for use as scaffolds of different shapes suited for bone cell engineering.  相似文献   
5.
COVID-19 has expanded across the world since its discovery in Wuhan (China) and has had a significant impact on people’s lives and health. Long COVID is a term coined by the World Health Organization (WHO) to describe a variety of persistent symptoms after acute SARS-CoV-2 infection. Long COVID has been demonstrated to affect various SARS-CoV-2-infected persons, independently of the acute disease severity. The symptoms of long COVID, like acute COVID-19, consist in the set of damage to various organs and systems such as the respiratory, cardiovascular, neurological, endocrine, urinary, and immune systems. Fatigue, dyspnea, cardiac abnormalities, cognitive and attention impairments, sleep disturbances, post-traumatic stress disorder, muscle pain, concentration problems, and headache were all reported as symptoms of long COVID. At the molecular level, the renin-angiotensin system (RAS) is heavily involved in the pathogenesis of this illness, much as it is in the acute phase of the viral infection. In this review, we summarize the impact of long COVID on several organs and tissues, with a special focus on the significance of the RAS in the disease pathogenesis. Long COVID risk factors and potential therapy approaches are also explored.  相似文献   
6.
This paper presents a novel geometric non-linear finite element formulation for the analysis of shear deformable two-layer beams with interlayer slips. We adopt the co-rotational approach where the motion of the element is decomposed into two parts: a rigid body motion which defines a local coordinate system and a small deformational motion of the element relative to this local coordinate system. The main advantage of this approach is that the transformation matrices relating local and global quantities are independent to the choice of the geometrical linear local element. The effect of transverse shear deformation of the layers is taken into account by assuming that each layer behaves as a Timoshenko beam element. The layers are assumed to be continuously connected and partial interaction is considered by considering a continuous relationship between the interface shear flow and the corresponding slip. In order to avoid curvature and shear locking phenomena, the local linear element is formulated using “exact” displacement shape functions derived from the closed-form solution of the governing equations of a two-layer beam element. Finally, three numerical applications are presented in order to assess the performance of the proposed formulation.  相似文献   
7.
The SERF experiment is a variant of the homonuclear J-resolved experiment, in which a single coupling constant is measured. It consists of a single chemical shift selective excitation that is followed by a biselective spin echo. Recent articles mention the existence of artefacts in SERF spectra that are supposedly related to pulse imperfections. This article presents a detailed study of the biselective refocusing pulses. It also reports a method for predicting the position and amplitude of the expected and unexpected 2D spectral peaks in SERF spectra. Artefacts can be partially eliminated by phase cycling or by the introduction of static field gradient pulses in the acquisition sequence. A procedure to obtain of pure absorption peaks in SERF spectra is proposed.  相似文献   
8.
9.
Today, the palindromic analysis of biological sequences, based exclusively on the study of “mirror” symmetry properties, is almost unavoidable. However, other types of symmetry, such as those present in friezes, could allow us to analyze binary sequences from another point of view. New tools, such as symmetropy and symmentropy, based on new types of palindromes allow us to discriminate binarized 1/f noise sequences better than Lempel–Ziv complexity. These new palindromes with new types of symmetry also allow for better discrimination of binarized DNA sequences. A relative error of 6% of symmetropy is obtained from the HUMHBB and YEAST1 DNA sequences. A factor of 4 between the slopes obtained from the linear fits of the local symmentropies for the two DNA sequences shows the discriminative capacity of the local symmentropy. Moreover, it is highlighted that a certain number of these new palindromes of sizes greater than 30 bits are more discriminating than those of smaller sizes assimilated to those from an independent and identically distributed random variable.  相似文献   
10.
Vetiver (Chrysopogon zizanioides (L.) Roberty) is a major tropical perfume crop. Access to its essential oil (EO)-filled roots is nevertheless cumbersome and land-damaging. This study, therefore, evaluated the potential of vetiver cultivation under soilless high-pressure aeroponics (HPA) for volatile organic compound (VOC) production. The VOC accumulation in the roots was investigated by transmission electron microscopy, and the composition of these VOCs was analyzed by gas chromatography coupled with mass spectrometry (GC/MS) after sampling by headspace solid-phase microextraction (HS-SPME). The HPA-grown plants were compared to plants that had been grown in potting soil and under axenic conditions. The HPA-grown plants were stunted, demonstrating less root biomass than the plants that had been grown in potting soil. The roots were slender, thinner, more tapered, and lacked the typical vetiver fragrance. HPA cultivation massively impaired the accumulation of the less-volatile hydrocarbon and oxygenated sesquiterpenes that normally form most of the VOCs. The axenic, tissue-cultured plants followed a similar and more exacerbated trend. Ultrastructural analyses revealed that the HPA conditions altered root ontogeny, whereby the roots contained fewer EO-accumulating cells and hosted fewer and more immature intracellular EO droplets. These preliminary results allowed to conclude that HPA-cultivated vetiver suffers from altered development and root ontology disorders that prevent EO accumulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号