首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9033篇
  免费   286篇
  国内免费   19篇
化学   6120篇
晶体学   68篇
力学   340篇
数学   1366篇
物理学   1444篇
  2023年   53篇
  2022年   77篇
  2021年   123篇
  2020年   159篇
  2019年   160篇
  2018年   182篇
  2017年   147篇
  2016年   306篇
  2015年   244篇
  2014年   271篇
  2013年   571篇
  2012年   574篇
  2011年   655篇
  2010年   347篇
  2009年   330篇
  2008年   571篇
  2007年   602篇
  2006年   540篇
  2005年   526篇
  2004年   402篇
  2003年   370篇
  2002年   286篇
  2001年   142篇
  2000年   130篇
  1999年   117篇
  1998年   90篇
  1997年   70篇
  1996年   112篇
  1995年   94篇
  1994年   82篇
  1993年   70篇
  1992年   65篇
  1991年   46篇
  1990年   45篇
  1989年   43篇
  1988年   28篇
  1987年   30篇
  1985年   60篇
  1984年   42篇
  1983年   31篇
  1982年   52篇
  1981年   43篇
  1980年   54篇
  1979年   41篇
  1978年   40篇
  1977年   36篇
  1976年   47篇
  1975年   46篇
  1974年   29篇
  1973年   28篇
排序方式: 共有9338条查询结果,搜索用时 15 毫秒
941.
The optimized molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) (1)H and (13)C NMR shift values of 5-(4-bromophenylamino)-2-methylsulfanylmethyl-2H-1,2,3-triazol-4-carboxylic acid ethyl ester have been calculated by using Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6-31G(d), 6-31G(d,p) and LANL2DZ basis sets. The optimized molecular geometric parameters were presented and compared with the data obtained from X-ray diffraction. In order to fit the calculated harmonic wavenumbers to the experimentally observed ones, scaled quantum mechanics force field (SQM FF) methodology was proceeded. Correlation factors between the experimental and calculated (1)H chemical shift values of the title compound in vacuum and in CHCl(3) solution by using the conductor-like screening continuum solvation model (COSMO) were reported. The calculated results showed that the optimized geometry well reproduces the crystal structure. The theoretical vibrational frequencies and chemical shifts are in very good agreement with the experimental data. In solvent media the energetic behavior of the title compound was also examined by using the B3LYP method with the 6-31G(d) basis set, applying the COSMO model. The obtained results indicated that the total energy of the title compound decreases with increasing polarity of the solvent. Furthermore, molecular electrostatic potential (MEP), natural bond orbital (NBO) and frontier molecular orbitals (FMOs) of the title compound were performed by the B3LYP/LANL2DZ method, and also thermodynamic parameters for the title compound were calculated at all the HF and B3LYP levels.  相似文献   
942.
We report the syntheses, crystal structures, and magnetic properties of KMn(2)(H(3)O(2))(MoO(4))(2) (MnH), KMn(2)(D(3)O(2))(MoO(4))(2) (MnD), KFe(2)(H(3)O(2))(MoO(4))(2) (FeH), KFe(2)(D(3)O(2))(MoO(4))(2) (FeD), KCo(2)(H(3)O(2))(MoO(4))(2) (CoH), and KCo(2)(D(3)O(2))(MoO(4))(2) (CoD), and the magnetic structures of MnD and FeD. They belong to the structural variant (space group I2/m) of the mineral natrochalcite NaCu(2)(H(3)O(2))(SO(4))(2) (space group C2/m) where the diagonal within the ac-plane of the latter become one axis of the former. The structure of MnD, obtained from Rietveld refinement of a high-resolution neutron pattern taken at 300 K, consists of chains of edge-sharing octahedra bridged by MoO(4) and D(3)O(2) to form layers, which are connected to K through the oxygen atoms to form the three-dimensional (3D)-network. The X-ray powder diffraction patterns of the other two compounds were found to belong to the same space group with similar parameters. The magnetic susceptibilities of MnH and FeH exhibit long-range ordering of the moments at a Ne?el temperature of 8 and 11 K, respectively, which are accompanied by additional strong Bragg reflections in the neutron diffraction in the ordered state, consistent with antiferromagnetism. Analyses of the neutron data for MnD and FeD reveal the presence of both long- and short-range orderings and commensurate magnetic structures with a propagation vector of (?, 0, ?). The moments are antiferromagnetically ordered within the chains with alternation between chains to generate four nonequivalent nuclear unit cells. For MnD the moments are perpendicular to the chain axis (b-axis) while for FeD they are parallel to the b-axis. The overall total is a fully compensated magnetic structure with zero moment in each case. Surprisingly, for KCo(2)(D(3)O(2))(MoO(4))(2) neither additional peaks nor increase of the nuclear peaks' intensities were observed in the neutron diffraction patterns below the magnetic anomaly at 12 K which was identified to originate from a small quantity of a ferromagnetic compound, Co(2)(OH)(2)MoO(4).  相似文献   
943.
A series of low-spin, six-coordinate complexes [Fe(TBzTArP)L(2)]X (1) and [Fe(TBuTArP)L(2)]X (2) (X = Cl(-), BF(4)(-), or Bu(4)N(+)), where the axial ligands (L) are HIm, 1-MeIm, DMAP, 4-MeOPy, 4-MePy, Py, and CN(-), were prepared. The electronic structures of these complexes were examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopy as well as density functional theory (DFT) calculations. In spite of the fact that almost all of the bis(HIm), bis(1-MeIm), and bis(DMAP) complexes reported previously (including 2) adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, the corresponding complexes of 1 show the (d(xz), d(yz))(4)(d(xy))(1) ground state at ambient temperature. At lower temperature, the electronic ground state of the HIm, 1-MeIm, and DMAP complexes of 1 changes to the common (d(xy))(2)(d(xz), d(yz))(3) ground state. All of the other complexes of 1 and 2 carrying 4-MeOPy, 4-MePy, Py, and CN(-) maintain the (d(xz), d(yz))(4)(d(xy))(1) ground state in the NMR temperature range, i.e., 298-173 K. The EPR spectra taken at 4.2 K are fully consistent with the NMR results because the HIm and 1-MeIm complexes of 1 and 2 adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, as revealed by the rhombic-type spectra. The DMAP complex of 1 exists as a mixture of two electron-configurational isomers. All of the other complexes adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state, as revealed by the axial-type spectra. Among the complexes adopting the (d(xz), d(yz))(4)(d(xy))(1) ground state, the energy gap between the d(xy) and d(π) orbitals in 1 is always larger than that of the corresponding complex of 2. Thus, it is clear that the benzoannelation of the porphyrin ring stabilizes the (d(xz), d(yz))(4)(d(xy))(1) ground state. The DFT calculation of the bis(Py) complex of analogous iron(III) porphyrinate, [Fe(TPTBzP)(Py)(2)](+), suggests that the (d(xz), d(yz))(4)(d(xy))(1) state is more stable than the (d(xy))(2)(d(xz), d(yz))(3) state in both ruffled and saddled conformations. The lowest-energy states in the two conformers are so close in energy that their ordering is reversed depending on the calculation methods applied. On the basis of the spectroscopic and theoretical results, we concluded that 1, having 4-MeOPy, 4-MePy, and Py as axial ligands, exists as an equilibrium mixture of saddled and ruffled isomers both of which adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state. The stability of the (d(xz), d(yz))(4)(d(xy))(1) ground state is ascribed to the strong bonding interaction between the iron d(xy) and porphyrin a(1u) orbitals in the saddled conformer caused by the high energy of the a(1u) highest occupied molecular orbital in TBzTArP. Similarly, a bonding interaction occurs between the d(xy) and a(2u) orbitals in the ruffled conformer. In addition, the bonding interaction of the d(π) orbitals with the low-lying lowest unoccupied molecular orbital, which is an inherent characteristic of TBzTArP, can also contribute to stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state.  相似文献   
944.
Carbon-supported PtRu nanoparticles (Ru/Pt: 0.25) were prepared by three different methods; simultaneous reduction of PtCl(4) and RuCl(3) (catalyst I) and changing the reduction order of PtCl(4) and RuCl(3) (catalysts II and III) to enhance the performance of the anodic catalysts for methanol and ethanol oxidation. Structure, microstructure and surface characterizations of all the catalysts were carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results of the XRD analysis showed that all catalysts had a face-centered cubic (fcc) structure with different and smaller lattice parameters than that of pure platinum, showing that the Ru incorporates into the Pt fcc structure by different ratios in all the catalysts. The typical particle sizes of all catalysts were in the range of 2-3 nm. The most active and stable catalyst for methanol and ethanol oxidation is catalyst III, in which a large amount (more than 90%) of PtRu alloy formation was observed. It has been found that this catalyst is about 8.0 and 33.4 times more active at ~0.60 V towards the methanol and ethanol oxidation reactions, respectively, compared to the commercial Pt catalyst.  相似文献   
945.
946.
The radiopharmaceutical201TlCl(thallium-201 chloride) is used in nuclear medicine for myocardial visualization. The solution of201TlCl was prepared using201Tl obtained by irradiating a natural mercury target with protons from the CV-28 cyclotron installed at IPEN-CNEN/SP. This solution was subjected to different quality control processes required for its use in medicine. Some of these controls concerned the determination of the radionuclidic impurities:200Tl,202Tl and203Hg; the chemical identification of201Tl+; the hydrazine concentration, mercury contamination and the presence of phosphate. Furthermore. the biological distribution in Wistar rats and tests for sterility, pyrogenicity and toxicity were carried out. It was verified that the solution obtained was in the form of thallous chloride. This radiopharmaceutical gave good heart images in animals but due to the high levels of200Tl and202Tl its use in humans is not possible unless enriched202Hg is used as target in the irradiation.  相似文献   
947.
Phase diagrams, volumes and heat capacities of aqueous mixtures of 2,6-dimethylpyridine (2,6-L) and 2-isobutoxyethanol (iBE) and activities of 2,6-L in aqueous mixtures were measured in the monophasic region near the lower critical solution temperature (LCST). With 2,6-L some measurement were also made just above the LCST. From the temperature dependence of these data, partial molar relative enthalpies (2,6-L), expansibilities and the temperature derivative of heat capacities were calculated and show that iBE undergoes a microphase transition at low concentration which is not related to the phase separation. On the other hand, the properties of 2,6-L in the water-rich region at temperatures well below the LCST indicates that this solute has only a slight tendency to associate. The heat capacities of 2,6-L show an important increase near the LCST. Such changes are not observed for iBE and other alkoxyethanols and amines since these systems already exist in the form of microphases; the partial molar properties of iBE near the LCST are nearly equal to the molar values of the pure liquid, and the changes in thermodynamic properties corresponding to the macroscopic phase transition, are therefore too small to be measured by the present techniques.  相似文献   
948.
949.
A mixture of benzimidazole salts (2–7), Pd(OAc)2 and K2CO3 in DMF–H2O catalyzes the Suzuki–Miyaura cross‐coupling reactions promoted by microwave irradiation resulting in high yield within a short time. In particular, the yield of the Suzuki–Miyaura reactions with aryl bromides was found to be nearly quantitative. The synthesized benzimidazole salts (2–7) were identified by 1H‐13C, NMR, IR spectroscopic methods and microanalysis. The molecular structure of 1 was determined by X‐ray crystallography. The antibacterial and antifungal activities of the novel benzimidazole derivatives (1–7) were also tested against standard strains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号