首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   1篇
  国内免费   2篇
化学   271篇
晶体学   4篇
力学   19篇
数学   86篇
物理学   100篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   12篇
  2015年   7篇
  2014年   12篇
  2013年   20篇
  2012年   46篇
  2011年   42篇
  2010年   25篇
  2009年   20篇
  2008年   34篇
  2007年   43篇
  2006年   29篇
  2005年   21篇
  2004年   16篇
  2003年   15篇
  2002年   25篇
  2001年   11篇
  2000年   4篇
  1999年   5篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1989年   3篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有480条查询结果,搜索用时 437 毫秒
91.
Self-assembled nanocages for hydrophilic guest molecules   总被引:1,自引:0,他引:1  
Reverse polymeric micelles are obtained following the association of polymeric amphiphiles in apolar media. To this date, reports of pharmaceutical applications for such micelles have been scarce, mainly because these systems have been studied in solvents that are not suitable for medical use. Here, alkylated star-shaped poly(glycerol methacrylate) polymers have been proposed in the design of oil-soluble reverse polymeric micelles. Micellar behavior was studied in various apolar solvents, including ethyl oleate, a pharmaceutically acceptable vehicle. The polymers were shown to assemble into spherical nanostructures (<40 nm) as determined by cryogenic transmission electron microscopy and atomic force microscopy studies. Interestingly, the reverse micelles were able to encapsulate various peptides/proteins (vasopressin, myoglobin, and albumin) in substantial amounts and facilitate their solubilization in oil. The nature of both the polymer used in micelle formation and the guest molecules was found to influence the ability of the micelle to interact with hydrophilic compounds.  相似文献   
92.
We propose a numerical method to accurately discriminate the influence of the different intrachannel nonlinear effects occurring in 40 Gbit/s optical transmissions, following an analogy with methods used to discriminate WDM interchannel effects. In contrast to other studies showing the predominance of intrachannel cross-phase modulation when low-dispersion fibers are used, in our study intrachannel four-wave mixing is the most penalizing effect in all investigated cases.  相似文献   
93.
The reference map, defined as the inverse motion function, is utilized in an Eulerian-frame representation of continuum solid mechanics, leading to a simple, explicit finite-difference method for solids undergoing finite deformations. We investigate the accuracy and applicability of the technique for a range of finite-strain elasticity laws under various geometries and loadings. Capacity to model dynamic, static, and quasi-static conditions is shown. Specifications of the approach are demonstrated for handling irregularly shaped and/or moving boundaries, as well as shock solutions. The technique is also integrated within a fluid–solid framework using a level-set to discern phases and using a standard explicit fluid solver for the fluid phases. We employ a sharp-interface method to institute the interfacial conditions, and the resulting scheme is shown to efficiently capture fluid–solid interaction solutions in several examples.  相似文献   
94.
We derive new expressions for the Rayleigh–Schrödinger series describing the perturbation of eigenvalues of quantum Hamiltonians. The method, somehow close to the so-called dimensional renormalization in quantum field theory, involves the Birkhoff decomposition of some Laurent series built up out of explicit fully non-resonant terms present in the usual expression of the Rayleigh–Schrödinger series. Our results provide new combinatorial formulae and a new way of deriving perturbation series in quantum mechanics. More generally we prove that such a decomposition provides solutions of general normal form problems in Lie algebras.  相似文献   
95.
Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved.  相似文献   
96.
Star-shaped molecules are of growing interest as organic optoelectronic materials. Here a detailed study of their photophysics using fluorescence depolarisation is reported. Fluorescence depolarisation dynamics are studied in branched oligofluorene-truxene molecules with a truxene core and well-defined three-fold symmetry, and are compared with linear fluorene oligomers. An initial anisotropy value of 0.4 is observed which shows a two-exponential decay with time constants of 500 fs and 3-8 ps in addition to a long-lived component. The femtosecond component is attributed to exciton localisation on one branch of the molecule and its amplitude reduces when the excitation is tuned to the low energy tail of the absorption spectrum. The picosecond component shows a weak dependence on the excitation wavelength and is similar to the calculated rate of the resonant energy transfer of the localised exciton between the branches. These assignments are supported by density-functional theory calculations which show a disorder-induced splitting of the two degenerate excited states. Exciton localisation is much slower than previously reported in other branched molecules which suggests that efficient light-harvesting systems can be designed using oligofluorenes and truxenes as building blocks.  相似文献   
97.
Morel M  Galas JC  Dahan M  Studer V 《Lab on a chip》2012,12(7):1340-1346
In this paper we first introduce a novel fabrication process, which allows for easy integration of thin track-etched nanoporous membranes, within 2D or 3D microchannel networks. In these networks, soluble chemical compounds can diffuse out of the channels through well-defined and spatially organized microfabricated porous openings. Interestingly, multiple micron-scale porous areas can be integrated in the same device and each of these areas can be connected to a different microfluidic channel and reservoir. We then present and characterize several membrane-based microdevices and their use for the generation of stable diffusible concentration gradients and complex dynamic chemical landscapes under shear free conditions. We also demonstrate how a simple flow-focusing geometry can be used to generate "on-demand" concentration profiles. In turn, these devices should provide an ideal experimental framework for high throughput cell-based assays: long term high-resolution video microscopy experiments can be performed, under multiple spatially and temporally controlled chemical conditions, with simple protocols and in a cell-friendly environment.  相似文献   
98.
Surfactants in droplet-based microfluidics   总被引:1,自引:0,他引:1  
Baret JC 《Lab on a chip》2012,12(3):422-433
Surfactants are an essential part of the droplet-based microfluidic technology. They are involved in the stabilization of droplet interfaces, in the biocompatibility of the system and in the process of molecular exchange between droplets. The recent progress in the applications of droplet-based microfluidics has been made possible by the development of new molecules and their characterizations. In this review, the role of the surfactant in droplet-based microfluidics is discussed with an emphasis on the new molecules developed specifically to overcome the limitations of 'standard' surfactants. Emulsion properties and interfacial rheology of surfactant-laden layers strongly determine the overall capabilities of the technology. Dynamic properties of droplets, interfaces and emulsions are therefore very important to be characterized, understood and controlled. In this respect, microfluidic systems themselves appear to be very powerful tools for the study of surfactant dynamics at the time- and length-scale relevant to the corresponding microfluidic applications. More generally, microfluidic systems are becoming a new type of experimental platform for the study of the dynamics of interfaces in complex systems.  相似文献   
99.
Among noncovalent forces, electrostatic ones are the strongest and possess a rather long-range action. For these reasons, charges and counterions play a prominent role in self-assembly processes in water and therefore in many biological systems. However, the complexity of the biological media often hinders a detailed understanding of all the electrostatic-related events. In this context, we have studied the role of charges and counterions in the self-assembly of lanreotide, a cationic octapeptide. This peptide spontaneously forms monodisperse nanotubes (NTs) above a critical concentration when solubilized in pure water. Free from any screening buffer, we assessed the interactions between the different peptide oligomers and counterions in solutions, above and below the critical assembly concentration. Our results provide explanations for the selection of a dimeric building block instead of a monomeric one. Indeed, the apparent charge of the dimers is lower than that of the monomers because of strong chemisorption. This phenomenon has two consequences: (i) the dimer-dimer interaction is less repulsive than the monomer-monomer one and (ii) the lowered charge of the dimeric building block weakens the electrostatic repulsion from the positively charged NT walls. Moreover, additional counterion condensation (physisorption) occurs on the NT wall. We furthermore show that the counterions interacting with the NTs play a structural role as they tune the NTs diameter. We demonstrate by a simple model that counterions adsorption sites located on the inner face of the NT walls are responsible for this size control.  相似文献   
100.
The efficient synthesis of chiral or achiral tertiary phosphines bearing an o-bromo (or iodo)aryl substituent is described. The key step of this synthesis is based on the reaction of a secondary phosphine borane with the 1,2-dibromo (or diiodo)arene, owing to the formation in situ of an aryne species in the presence of n-butyllithium. When P-chirogenic secondary phosphine boranes were used, the corresponding o-halogeno-arylphosphine boranes were obtained without racemization in moderate to good yields and with ee up to 99%. The stereochemistry of the reaction, with complete retention of the configuration at the P atom, has been established by X-ray structures of P-chirogenic o-halogenophenyl phosphine borane complexes. The decomplexation of the borane was easily achieved without racemization using DABCO to obtain the free o-halogeno-arylphosphines in high yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号