首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46403篇
  免费   8356篇
  国内免费   1504篇
化学   47034篇
晶体学   422篇
力学   699篇
综合类   1篇
数学   4415篇
物理学   3692篇
  2022年   86篇
  2021年   220篇
  2020年   1304篇
  2019年   2660篇
  2018年   1099篇
  2017年   715篇
  2016年   3512篇
  2015年   3645篇
  2014年   3563篇
  2013年   4556篇
  2012年   3290篇
  2011年   2590篇
  2010年   3117篇
  2009年   3040篇
  2008年   2760篇
  2007年   2130篇
  2006年   1906篇
  2005年   2059篇
  2004年   1856篇
  2003年   1667篇
  2002年   2358篇
  2001年   1462篇
  2000年   1382篇
  1999年   480篇
  1998年   197篇
  1997年   200篇
  1996年   232篇
  1995年   152篇
  1994年   157篇
  1993年   150篇
  1992年   156篇
  1991年   121篇
  1990年   115篇
  1989年   111篇
  1988年   101篇
  1987年   117篇
  1986年   102篇
  1985年   154篇
  1984年   190篇
  1983年   145篇
  1982年   163篇
  1981年   190篇
  1980年   204篇
  1979年   175篇
  1978年   184篇
  1977年   163篇
  1976年   165篇
  1975年   176篇
  1974年   169篇
  1973年   145篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The fundamental understanding of the subtle interactions between molecules and plasmons is of great significance for the development of plasmon‐enhanced spectroscopy (PES) techniques with ultrahigh sensitivity. However, this information has been elusive due to the complex mechanisms and difficulty in reliably constructing and precisely controlling interactions in well‐defined plasmonic systems. Herein, the interactions in plasmonic nanocavities of film‐coupled metallic nanocubes (NCs) are investigated. Through engineering the spacer layer, molecule–plasmon interactions were precisely controlled and resolved within 2 nm. Efficient energy exchange interactions between the NCs and the surface within the 1–2 nm range are demonstrated. Additionally, optical dressed molecular excited states with a huge Lamb shift of ≈7 meV at the single‐molecule (SM) level were observed. This work provides a basis for understanding the underlying molecule–plasmon interaction, paving the way for fully manipulating light–matter interactions at the nanoscale.  相似文献   
992.
The hardness of oxo ions (O2?) means that coinage‐metal (Cu, Ag, Au) clusters supported by oxo ions (O2?) are rare. Herein, a novel μ4‐oxo supported all‐alkynyl‐protected silver(I)–copper(I) nanocluster [Ag74?xCuxO12(PhC≡C)50] ( NC‐1 , avg. x=37.9) is characterized. NC‐1 is the highest nuclearity silver–copper heterometallic cluster and contains an unprecedented twelve interstitial μ4‐oxo ions. The oxo ions originate from the reduction of nitrate ions by NaBH4. The oxo ions induce the hierarchical aggregation of CuI and AgI ions in the cluster, forming the unique regioselective distribution of two different metal ions. The anisotropic ligand coverage on the surface is caused by the jigsaw‐puzzle‐like cluster packing incorporating rare intermolecular C?H???metal agostic interactions and solvent molecules. This work not only reveals a new category of high‐nuclearity coinage‐metal clusters but shows the special clustering effect of oxo ions in the assembly of coinage‐metal clusters.  相似文献   
993.
Flow injection analysis with amperometric detection (FIA‐AD) at screen‐printed carbon electrodes (SPCEs) in optimum medium of Britton‐Robinson buffer (0.04 mol ? L?1, pH 2.0) was used for the determination of three tumor biomarkers (homovanillic acid (HVA), vanillylmandelic acid (VMA), and 5‐hydroxyindole‐3‐acetic acid (5‐HIAA)). Dependences of the peak current on the concentration of biomarkers were linear in the whole tested concentration range from 0.05 to 100 μmol ? L?1, with limits of detection (LODs) of 0.065 μmol ? L?1 for HVA, 0.053 μmol ? L?1 for VMA, and 0.033 μmol ? L?1 for 5‐HIAA (calculated from peak heights), and 0.024 μmol ? L?1 for HVA, 0.020 μmol ? L?1 for VMA, and 0.012 μmol ? L?1 for 5‐HIAA (calculated from peak areas), respectively.  相似文献   
994.
Carquinostatin A (CQS), a potent neuroprotective substance, is a unique carbazole alkaloid with both an ortho‐quinone function and an isoprenoid moiety. We identified the entire gene cluster responsible for CQS biosynthesis in Streptomyces exfoliatus through heterologous production of CQS and gene deletion. Biochemical characterization of seven CQS biosynthetic gene products (CqsB1–7) established the total biosynthetic pathway of CQS. Reconstitution of CqsB1 and CqsB2 showed that the synthesis of the carbazole skeleton involves CqsB1‐catalyzed decarboxylative condensation of an α‐hydroxyl‐β‐keto acid intermediate with 3‐hydroxybutyryl‐ACP followed by CqsB2‐catalyzed oxidative cyclization. Based on crystal structures and mutagenesis‐based biochemical assays, a detailed mechanism for the unique deprotonation‐initiated cyclization catalyzed by CqsB2 is proposed. Finally, analysis of the substrate specificity of the biosynthetic enzymes led to the production of novel carbazoles.  相似文献   
995.
Mining microbial genomes including those of Streptomyces reveals the presence of a large number of biosynthetic gene clusters. Unraveling this genetic potential has proved to be a useful approach for novel compound discovery. Here, we report the heterologous expression of two similar P450‐associated cyclodipeptide synthase‐containing gene clusters in Streptomyces coelicolor and identification of eight rare and novel natural products, the C3‐guaninyl indole alkaloids guanitrypmycins. Expression of different gene combinations proved that the cyclodipeptide synthases assemble cyclo‐l ‐Trp‐l ‐Phe and cyclo‐l ‐Trp‐l ‐Tyr, which are consecutively and regiospecifically modified by cyclodipeptide oxidases, cytochrome P450 enzymes, and N‐methyltransferases. In vivo and in vitro results proved that the P450 enzymes function as key biocatalysts and catalyze the regio‐ and stereospecific 3α‐guaninylation at the indole ring of the tryptophanyl moiety. Isotope‐exchange experiments provided evidence for the non‐enzymatic epimerization of the biosynthetic pathway products via keto–enol tautomerism. This post‐pathway modification during cultivation further increases the structural diversity of guanitrypmycins.  相似文献   
996.
Designing structural order in electronically active organic solids remains a great challenge in the field of materials chemistry. Now, 2D poly(arylene vinylene)s prepared as highly crystalline covalent organic frameworks (COFs) by base‐catalyzed aldol condensation of trimethyltriazine with aromatic dialdehydes are reported. The synthesized polymers are highly emissive (quantum yield of up to 50 %), as commonly observed in their 1D analogues poly(phenylene vinylene)s. The inherent well‐defined porosity (surface area ca. 1000 m2 g?1, pore diameter ca. 11 Å for the terephthaldehyde derived COF‐1) and 2D structure of these COFs also present a new set of properties and are likely responsible for the emission color, which is sensitive to the environment. COF‐1 is highly hydrophilic and reveals a dramatic macroscopic structural reorganization that has not been previously observed in framework materials.  相似文献   
997.
998.
Defect engineering is a versatile approach to modulate band and electronic structures as well as materials performance. Herein, metal–organic frameworks (MOFs) featuring controlled structural defects, namely UiO‐66‐NH2‐X (X represents the molar equivalents of the modulator, acetic acid, with respect to the linker in synthesis), were synthesized to systematically investigate the effect of structural defects on photocatalytic properties. Remarkably, structural defects in MOFs are able to switch on the photocatalysis. The photocatalytic H2 production rate presents a volcano‐type trend with increasing structural defects, where Pt@UiO‐66‐NH2‐100 exhibits the highest activity. Ultrafast transient absorption spectroscopy unveils that UiO‐66‐NH2‐100 with moderate structural defects possesses the fastest relaxation kinetics and the highest charge separation efficiency, while excessive defects retard the relaxation and reduce charge separation efficiency.  相似文献   
999.
Two‐dimensional (2D) superlattices offer promising technological opportunities in tuning the intercalation chemistry of metal ions. Now, well‐ordered 2D superlattices of monolayer titania and carbon with tunable interlayer‐spacing are synthesized by a molecularly mediated thermally induced approach. The 2D superlattices are vertically encapsulated in hollow carbon nanospheres, which are embedded with TiO2 quantum dots, forming a 0D‐2D‐3D multi‐dimensional architecture. The multi‐dimensional architecture with the 2D superlattices encapsulated inside exhibits a near zero‐strain characteristic and enriched electrochemical reactivity, achieving a highly efficient Na+ storage performance with exceptional rate capability and superior long‐term cyclability.  相似文献   
1000.
Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm?2 V?1 s?1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号