首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1620篇
  免费   64篇
  国内免费   14篇
化学   1096篇
晶体学   9篇
力学   54篇
数学   243篇
物理学   296篇
  2023年   7篇
  2022年   24篇
  2021年   21篇
  2020年   23篇
  2019年   30篇
  2018年   31篇
  2017年   18篇
  2016年   54篇
  2015年   40篇
  2014年   61篇
  2013年   83篇
  2012年   118篇
  2011年   105篇
  2010年   74篇
  2009年   47篇
  2008年   110篇
  2007年   103篇
  2006年   115篇
  2005年   126篇
  2004年   84篇
  2003年   54篇
  2002年   56篇
  2001年   23篇
  2000年   12篇
  1999年   10篇
  1998年   20篇
  1997年   19篇
  1996年   22篇
  1995年   12篇
  1994年   7篇
  1993年   9篇
  1992年   9篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1985年   5篇
  1984年   8篇
  1983年   11篇
  1982年   6篇
  1981年   10篇
  1980年   16篇
  1979年   7篇
  1978年   8篇
  1977年   10篇
  1976年   8篇
  1975年   11篇
  1974年   5篇
  1973年   8篇
  1972年   4篇
  1969年   7篇
排序方式: 共有1698条查询结果,搜索用时 15 毫秒
71.
In this study, we simultaneously measured nitric oxide (NO) and oxygen (O2) dynamics in the myocardium during myocardial ischemia-reperfusion (IR) utilizing sol-gel modified electrochemical NO and O2 microsensors. In addition, we attempted to clarify the correlation between NO release in the ischemic period and O2 restoration in the myocardium after reperfusion, comparing a control heart with a remote ischemic preconditioning (RIPC)-treated heart as an attractive strategy for myocardial protection. Rat hearts were randomly divided into two groups: a control group (n = 5) and an RIPC group (n = 5, with RIPC treatment). Myocardia that underwent RIPC treatment (182 ± 70 nM, p < 0.05) released more NO during the ischemic period than those of the control group (63 ± 41 nM). The restoration value of oxygen tension (pO2) in the RIPC group significantly increased and was restored to pre-ischemic levels (92.6 ± 36.8%); however, the pO2 of the control group did not increase throughout the reperfusion period (5.7 ± 7.5%, p = 0.001). Myocardial infarct size measurements revealed a significant decrease in cell death in the myocardium region of the RIPC group (41.44 ± 6.42%, p = 0.001) compared with the control group (60.05 ± 10.91%). As a result, we showed that the cardioprotective effect of RIPC could be attributed to endogenous NO production during the ischemic period, which subsequently promoted reoxygenation in post-ischemic myocardia during early reperfusion. Our results suggest that the promotion of endogenous formation during an ischemic episode might be helpful as a therapeutic strategy for protecting the myocardium from IR injury. Additionally, our NO and O2 perm-selective microsensors could be utilized to evaluate the effect of drug or treatment.  相似文献   
72.
A general molecular mechanics (MM) model for treating aqueous Cu2+ and Zn2+ ions was developed based on valence bond (VB) theory and incorporated into the atomic multipole optimized energetics for biomolecular applications (AMOEBA) polarizable force field. Parameters were obtained by fitting MM energies to that computed by ab initio methods for gas‐phase tetra‐ and hexa‐aqua metal complexes. Molecular dynamics (MD) simulations using the proposed AMOEBA‐VB model were performed for each transition metal ion in aqueous solution, and solvent coordination was evaluated. Results show that the AMOEBA‐VB model generates the correct square‐planar geometry for gas‐phase tetra‐aqua Cu2+ complex and improves the accuracy of MM model energetics for a number of ligation geometries when compared to quantum mechanical (QM) computations. On the other hand, both AMOEBA and AMOEBA‐VB generate results for Zn2+–water complexes in good agreement with QM calculations. Analyses of the MD trajectories revealed a six‐coordination first solvation shell for both Cu2+ and Zn2+ ions in aqueous solution, with ligation geometries falling in the range reported by previous studies. © 2012 Wiley Periodicals, Inc.  相似文献   
73.
In this review, the experimental set-up and functional characteristics of single-wavelength and broad-band femtosecond upconversion spectrophotofluorometers developed in our laboratory are described. We discuss applications of this technique to biophysical problems, such as ultrafast fluorescence quenching and solvation dynamics of tryptophan, peptides, proteins, reduced nicotinamide adenine dinucleotide (NADH), and nucleic acids. In the tryptophan dynamics field, especially for proteins, two types of solvation dynamics on different time scales have been well explored: ~1 ps for bulk water, and tens of picoseconds for “biological water”, a term that combines effects of water and macromolecule dynamics. In addition, some proteins also show quasi-static self-quenching (QSSQ) phenomena. Interestingly, in our more recent work, we also find that similar mixtures of quenching and solvation dynamics occur for the metabolic cofactor NADH. In this review, we add a brief overview of the emerging development of fluorescent RNA aptamers and their potential application to live cell imaging, while noting how ultrafast measurement may speed their optimization.  相似文献   
74.
This work presents the electrochemical response of a 2-(methylthio)phenol glassy carbon based electrode for a promising voltammetric pH sensor in both buffered and low-buffered solutions. Electropolymerization of the redox species was performed with the resulting polymer presenting a Nernstian response in buffered media, with a sensitivity of 51 mV/pH unit. The effectiveness of the sulfhydryl bond to facilitate proton transfer from the bulk solution to the phenol molecules has been confirmed, providing an accurate pH measurement of 8.28 in sea water media, compared to that measured with a calibrated glass pH probe of 8.30.  相似文献   
75.
We address the problem of "nonlocal computation," in which separated parties must compute a function without any individual learning anything about the inputs. Surprisingly, entanglement provides no benefit over local classical strategies for such tasks, yet stronger nonlocal correlations allow perfect success. This provides intriguing insights into the limits of quantum information processing, the nature of quantum nonlocality, and the differences between quantum and stronger-than-quantum nonlocal correlations.  相似文献   
76.
In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstructed image along with fast and reliable data acquisition is highly desirable for many biological applications. An accurate representation of uniform distribution of projection data is necessary to ensure high reconstruction quality. The current techniques for data acquisition suffer from nonuniformities or local anisotropies in the distribution of projection data and present a poor approximation of a true uniform and isotropic distribution. In this work, we have implemented a technique based on Quasi-Monte Carlo method to acquire projections with more uniform and isotropic distribution of data over a 3D acquisition space. The proposed technique exhibits improvements in the reconstruction quality in terms of both mean-square-error and visual judgment. The effectiveness of the suggested technique is demonstrated using computer simulations and 3D EPRI experiments. The technique is robust and exhibits consistent performance for different object configurations and orientations.  相似文献   
77.
Periodate oxidations of ethanediol and pinacol each occur in two phases; these are (1) formation and (2) decomposition of the intermediate complex. In phase (1), an increase in acidity gives . The rate of oxidation of ethanediol decreases with increasing acidity, whereas the rate of oxidation of pinacol maximizes with H5IO6. For both glycols, the activation energy increases and ΔSact decreases with increasing acidity. In phase (2), the energy of activation is essentially constant with pH, whereas the rate decreases, and the entropy of activation decreases modestly as pH decreases. The latter correlates with the nonhomogeniuty of product formation. Rates for 3‐chloro‐1,2‐propanediol are also listed. Pentaerythritol forms an inactive complex with or H5IO6 indicating the importance of chelation in the formation of the intermediate complex. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
78.
The robustness of the refocused INADEQUATE MAS NMR pulse sequence for probing through-bond connectivities has been demonstrated in a large range of solid-state applications. This pulse sequence nevertheless suffers from artifacts when applied to multispin systems, e.g. uniformly labeled (13)C solids, which distort the lineshapes and can potentially result in misleading correlation peaks. In this paper, we present a detailed account that combines product-operator analysis, numerical simulations and experiments of the behavior of a three-spin system during the refocused INADEQUATE pulse sequence. The origin of undesired anti-phase contributions to the spectral lineshapes are described, and we show that they do not interfere with the observation of long-range correlations (e.g. two-bond (13)C-(13)C correlations). The suppression of undesired contributions to the refocused INADEQUATE spectra is shown to require the removal of zero-quantum coherences within a z-filter. A method is proposed to eliminate zero-quantum coherences through dephasing by heteronuclear dipolar couplings, which leads to pure in-phase spectra.  相似文献   
79.
We have fabricated a solution-processed ZnO thin-film transistor without vacuum deposition. ZnO nanoparticles were prepared by the polyol method from zinc acetate, polyvinyl pyrrolidone, and diethyleneglycol. The solution-processable semiconductor ink was prepared by dispersing the synthesized ZnO in a solvent. Inverted stagger type thin-film transistors were fabricated by spin casting the ZnO ink on the heavily doped Si wafer with 200 nm thick SiO2, followed by evaporation of Cr/Au source and drain electrodes. After the drying and heat treatment at 600 C, a relatively dense ZnO film was obtained. The film characteristics were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In order to obtain the electrical properties of the solution-derived transistor, the on–off ratio, threshold voltage, and mobility were measured.  相似文献   
80.
Divalent lanthanide and alkaline-earth complexes supported by N-heterocyclic carbene (NHC) ligands have been accessed by redox-transmetalation between air-stable NHC-AgI complexes and the corresponding metals. By using the small ligand 1,3-dimethylimidazol-2-ylidene (IMe), two series of isostructural complexes were obtained: the tetra-NHC complexes [LnI2(IMe)4] (Ln=Eu and Sm) and the bis-NHC complexes [MI2(IMe)2(THF)2] (M=Yb, Ca and Sr). In the former, distortions in the NHC coordination were found to originate from intermolecular repulsions in the solid state. Application of the redox-transmetalation strategy with the bulkier 1,3-dimesitylimidazol-2-ylidene (IMes) ligand yielded [SrI2(IMes)(THF)3], while using a similar procedure with Ca metal led to [CaI2(THF)4] and uncoordinated IMes. DFT calculations were performed to rationalise the selective formation of the bis-NHC adduct in [SrI2(IMe)2(THF)2] and the tetra-NHC adduct in [SmI2(IMe)4]. Since the results in the gas phase point towards preferential formation of the tetra-NHC complexes for both metal centres, the differences between both arrangements are a result of solid-state effects such as slightly different packing forces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号