全文获取类型
收费全文 | 38149篇 |
免费 | 8265篇 |
国内免费 | 1418篇 |
专业分类
化学 | 42091篇 |
晶体学 | 333篇 |
力学 | 474篇 |
数学 | 2366篇 |
物理学 | 2568篇 |
出版年
2023年 | 26篇 |
2022年 | 77篇 |
2021年 | 239篇 |
2020年 | 1277篇 |
2019年 | 2626篇 |
2018年 | 1034篇 |
2017年 | 677篇 |
2016年 | 3448篇 |
2015年 | 3567篇 |
2014年 | 3474篇 |
2013年 | 4128篇 |
2012年 | 3077篇 |
2011年 | 2296篇 |
2010年 | 2927篇 |
2009年 | 2874篇 |
2008年 | 2484篇 |
2007年 | 1876篇 |
2006年 | 1551篇 |
2005年 | 1754篇 |
2004年 | 1495篇 |
2003年 | 1362篇 |
2002年 | 2024篇 |
2001年 | 1369篇 |
2000年 | 1290篇 |
1999年 | 380篇 |
1998年 | 51篇 |
1997年 | 51篇 |
1996年 | 47篇 |
1995年 | 32篇 |
1994年 | 28篇 |
1993年 | 25篇 |
1992年 | 20篇 |
1991年 | 30篇 |
1990年 | 20篇 |
1989年 | 15篇 |
1988年 | 19篇 |
1987年 | 22篇 |
1986年 | 11篇 |
1985年 | 22篇 |
1984年 | 15篇 |
1983年 | 11篇 |
1982年 | 9篇 |
1981年 | 9篇 |
1980年 | 9篇 |
1979年 | 7篇 |
1978年 | 7篇 |
1977年 | 16篇 |
1975年 | 7篇 |
1974年 | 6篇 |
1970年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
Bis‐benzimidazolium salts were prepared successfully from commercially available and inexpensive o‐phenylenediamine through a series of simple reactions. The bis‐NHC‐Pd complexes prepared in situ can catalyze Suzuki‐Miyaura cross‐coupling reaction under very mild conditions in aqueous media with excellent yields. The efficiency of this reaction is demonstrated by its compatibility with a range of functional groups. Di‐ortho‐substituted biaryls could be accomplished in 89–99% yields. Moreover, the rigorous exclusion of air or moisture is not required in these transformations. 相似文献
963.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line. 相似文献
964.
A series of imidazolium chlorides for the formation of tridentate CNO‐donor palladium(II) complexes featuring N‐heterocyclic carbene moieties have been developed from cheap and readily available starting materials with high yields. Their palladium complexes were prepared by reactions between the ligand precursors and PdCl2 using K2CO3 as base in pyridine with reasonable yields. These air‐stable metal complexes were characterized using 1H NMR and 13C{1H} NMR spectroscopy and elemental analyses. Heteronuclear multiple bond correlation experiments were performed to identify key NMR signals of these compounds. The structures of two of the complexes were also established by single‐crystal X‐ray diffraction analysis. One of these complexes was successfully applied in the direct C―H functionalization reactions between heterocyclic compounds and aryl bromides, producing excellent yields of coupled products. The coupling reactions were scalable, allowing grams of coupled products to be obtained with a mere 2 mol% of Pd loading. The catalyst system developed allowed the large‐scale preparation of several push–pull chromophores straightforwardly. Photophysical properties based on UV–visible and fluorescence spectroscopy for these chromophores were investigated. Deep blue photoluminescence with moderate quantum efficiency and twisted intramolecular charge transfer excited state were observed for these chromophores. Density functional theory (DFT) and time‐dependent DFT calculations were performed to support the experimental results. 相似文献
965.
Arefeh Dadras M. Reza Naimi‐Jamal Firouz Matloubi Moghaddam Seyed Ebrahim Ayati 《应用有机金属化学》2018,32(2)
Aryl halides and especially inactive aryl chlorides were coupled to benzenoid aromatic rings in a Suzuki–Miyaura coupling reaction in the absence of organic solvents and toxic phosphine ligands. The reaction was catalysed by a recoverable magnetic nanocatalyst, Pd@Fe3O4, in aqueous media. This method is green, and the catalyst is easily removed from the reaction media using an external magnetic field and can be re‐used at least 10 times without any considerable loss in its activity. The catalyst was characterized using scanning and transmission electron microscopies, thermogravimetric analysis, inductively coupled plasma spectroscopy, Fourier transform infrared spectroscopy, CHN analysis, X‐ray diffraction and vibrating sample magnetometry. 相似文献
966.
Two water‐soluble 6‐(pyrazin‐2‐yl)‐1,3,5‐triazine‐2,4‐diamino (pzta)‐based Cu(II) complexes, namely [Cu(l ‐Val)(pzta)(H2O)]ClO4 ( 1 ) and [Cu(l ‐Thr)(pzta)(H2O)]ClO4 ( 2 ) (l ‐Val: l ‐valinate; l ‐Thr: l ‐threoninate), were synthesized and characterized using elemental analyses, molar conductance measurements, spectroscopic methods and single‐crystal X‐ray diffraction. The results indicated that the molecular structures of the complexes are five‐coordinated and show a distorted square‐pyramidal geometry, in which the central copper ions are coordinated to N,N atoms of pzta and N,O atoms of amino acids. The interactions of the complexes with DNA were investigated using electronic absorption, competitive fluorescence titration, circular dichroism and viscosity measurements. These studies confirmed that the complexes bind to DNA through a groove binding mode with certain affinities (Kb = 4.71 × 103 and 1.98 × 103 M?1 for 1 and 2 , respectively). The human serum albumin (HSA) binding properties of the complexes were also evaluated using fluorescence and synchronous fluorescence spectroscopies, indicating that the complexes could quench the intrinsic fluorescence of HSA in a static quenching process. The relevant thermodynamic parameters revealed the involvement of van der Waals forces and hydrogen bonds in the formation of complex–HSA systems. Finally, molecular docking technology was also used to further verify the interactions of the complexes with DNA/HSA. 相似文献
967.
Our group has developed a series of molecular electrocatalysts for hydrogen generation based on triazenido–metal complexes (cobalt, copper, etc.). In this paper, we first present the electrocatalytic performance of a new dinuclear silver complex, [Ag2(L)2], formed by the reaction of the triazenido ligand 1‐[(2‐carboxymethyl)benzene]‐3‐[(2‐methoxy)benzene]triazene (HL) with AgNO3. At room temperature, the silver complex shows photoluminescence at 653 nm. The electrocatalytic systems based on this silver complex can afford 106.57 and 1536.36 moles of hydrogen per mole of catalyst per hour from acetic acid at an overpotential (OP) of 991.6 mV and from a neutral aqueous buffer (pH = 7.0) at an OP of 837.6 mV, respectively. Electrochemical investigations show that both silver ion and triazenido ligand play a role in determining the catalytic activities of the electrocatalytic system. 相似文献
968.
A new magnetic catalyst was prepared through the reaction of silanol groups, on the surface of silica‐coated Fe3O4 magnetic nanoparticles, with (3‐chloropropyl)triethoxysilane followed by hexamethylenetetramine and chlorosulfonic acid. The obtained magnetic catalyst was characterized using thermogravimetric analysis, vibrating sample magnetometry, scanning electron microscopy and energy‐dispersive X‐ray analysis. Its catalytic activity was investigated in the synthesis of pyranopyrazole compounds, and the results were excellent regarding high yield of the products and short reaction time. 相似文献
969.
In this paper, a mild and green protocol has been developed for the synthesis of quinazoline derivatives. The catalytic activity of 7‐aminonaphthalene‐1,3‐disulfonic acid‐functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2@Propyl–ANDSA) was investigated in the one‐pot synthesis of new derivatives of tetrahydrotetrazolo[1,5‐a]quinazolines and tetrahydrobenzo[h]tetrazolo[5,1‐b]quinazolines from the reaction of aldehydes, 5‐aminotetrazole, and dimedone or 6‐methoxy‐3,4‐dihyronaphtalen‐1(2H)‐one at 100 °C in H2O/EtOH as the solvent. The catalyst was characterized before and after the organic reaction. Fe3O4@SiO2@Propyl–ANDSA showed remarkable advantages in comparison with previous methods. Advantages of the method presented here include easy purification, reusability of the catalyst, green and mild procedure, and synthesis of new derivatives in high yields within short reaction time. 相似文献
970.
Series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes were prepared with tetradentate Schiff base ligand derived by condensation of 2‐aminophenol with dibenzoylmethane. The novel Schiff base H2L (2–2′‐((1Z,1Z’)‐(1,3‐diphenyl propane‐1,3 diylidene) bis (azanylylidene) diphenol) and its binary metal complexes were characterized by physicochemical procedures i.e. elemental analysis, FT‐IR, UV–Vis, thermal analyses (TGA/DTG), mass spectrometry, magnetic susceptibility and conductometric measurements. On the basis of these studies, an octahedral geometry for all these complexes was proposed expect Ni(II) complex which had tetrahedral geometry. Molar conductivity values revealed that the complexes were electrolytes except Mn(II), Zn(II) and Cd(II) complexes were non electrolytes. The ligand bound to the metal ions via two azomethine N and two phenolic OH as indicated from the IR and 1H NMR spectral study. The molecular and electronic structures of H2L and its zinc complex were optimized theoretically and the quantum chemical parameters were calculated. The antimicrobial activity against a number of bacterial organisms as Streptococcus pneumonia, Bacillus Subtilis, Pseudomonas aeruginosa and Escherichia coli and fungi as Aspergillus fumigates, Syncephalastrum racemosum, Geotricum candidum and Candida albicans by disk diffusion method were screened for the Schiff base and its complexes. The Cd(II) complex has potent antimicrobial activity. Anticancer activity of the Schiff base ligand and its metal complexes were evaluated in human cancer (MCF‐7 cells viability). The Cr(III) complex exhibited higher activity than other complexes and ligand. Molecular docking was used to predict the binding between Schiff base ligand (H2L) and its Zn(II) complex and the receptors of RNA of amikacin antibiotic (4P20) and human‐DNA‐Topo I complex (1SC7). The docking study provided useful structural information for inhibition studies. 相似文献