Overall water splitting is a promising way to alleviate the energy crisis by producing renewable and clean hydrogen fuel. The development of highly efficient, low cost, and stable electrocatalysts is of great importance for the large-scale application of overall water splitting. Herein, we report an effective and facile strategy to prepare non-noble nickel-iron (NiFe) alloy nanoparticles (NPs) decorated on oxidized carbon cloth (OCC) as a bifunctional electrocatalyst for overall water splitting. The homogeneous dispersion of small-sized NPs achieved by anchoring the metal species to oxygen-containing groups on the OCC support, together with the 3D conductive nature of the scaffold, ensures optimal exposure of active metal sites and also results in high electrical conductivity. As a result, our electrocatalyst affords superior oxygen evolution reaction activity with a low overpotential of 281 mV at 10 mA cm−2 and is also stable for up to around 17 h in an alkaline electrolyte; the catalyst also demonstrates a high efficiency for overall water splitting. Our strategy has, therefore, great potential for practical energy conversion applications. 相似文献
Alcohols and phenols are protected with hexamethyldisilazane in the presence of N,N′,N′,N?-tetramethyletra-2,3-pyridinoporphyrazinato copper (II) in good-to-excellent yields at room temperature. 相似文献
Acid phosphatase-I (Apase-I) from seeds of Nelumbo nucifera was purified to electrophoretic homogeneity by combination of ammonium sulfate precipitation, size-exclusion and ion exchange chromatography. SDS-PAGE of purified Apase-I gave a single band with molecular mass of 80 kDa under reducing and non-reducing conditions, indicating that the enzyme was a monomer. The purified enzyme showed maximum activity at 50°C and at pH 5. The Km, Vmax and Kcat for p-nitrophenyl phosphate were 132 μM, 10 μmol/min/mg and 6.7/sec respectively. Apase-I activity was strongly inhibited by Zn2+, W2+; weakly inhibited by Cu2+, Mo2+ and Cr6+ and moderately activated by Mg2+. The enzyme was shown to be thermolabile as it lost 50% of its activity at 50°C after incubation for 1 hour. The amino acid analysis of enzyme revealed high proportion of acidic amino acids, which is very similar to that of tomato Apase-I and lower than potato Apase. 相似文献
Linear and nonlinear phenomena are investigated in toroidal ion temperature gradient (TITG)-driven pure drift mode. The model includes inhomogeneity in background magnetic field, ion temperature, and density. Finite Larmor radius effect is incorporated to understand the effect of low-frequency wave on ion dynamics. Electrons are assumed to follow nonthermal distribution, that is, kappa and Cairns distributions. Dispersion relation is obtained to analyse the linear behaviour of the TITG mode in the presence of non-Maxwellian electron distribution. In the nonlinear regime, exact solutions (soliton and shocks) are obtained (in dispersive and dissipative medium respectively) by using functional variable method to solve the nonlinear partial differential equation obtained for the system under consideration. Graphical illustrations are used to exhibit the characteristics of linear and nonlinear structures and their dependence on different physical parameters. It is observed that for TITG-driven pure drift mode, rarefactive solitons are formed for both thermal and nonthermal electron distributions. It is also observed that variation of electrons from standard thermal distribution affects the propagation characteristics of linear and nonlinear structures in TITG-driven modes. Results of our investigations will be helpful to understand the low-frequency waves in inhomogeneous plasmas in the presence of nonthermal electron distributions which are frequently observed by satellite missions and are also observed in laboratory plasmas. 相似文献
Coumarin is an important six-membered aromatic heterocyclic pharmacophore, widely distributed in natural products and synthetic molecules. The versatile and unique features of coumarin nucleus, in combination with privileged sulfonamide moiety, have enhanced the broad spectrum of biological activities. The research and development of coumarin, sulfonamide-based pharmacology, and medicinal chemistry have become active topics, and attracted the attention of medicinal chemists, pharmacists, and synthetic chemists. Coumarin sulfonamide compounds and analogs as clinical drugs have been used to cure various diseases with high therapeutic potency, which have shown their enormous development value. The diversified and wide array of biological activities such as anticancer, antibacterial, anti-fungal, antioxidant and anti-viral, etc. were displayed by diversified coumarin sulfonamides. The present systematic and comprehensive review in the current developments of synthesis and the medicinal chemistry of coumarin sulfonamide-based scaffolds give a whole range of therapeutics, especially in the field of oncology and carbonic anhydrase inhibitors. In the present review, various synthetic approaches, strategies, and methodologies involving effect of catalysts, the change of substrates, and the employment of various synthetic reaction conditions to obtain high yields is cited. 相似文献
High-density lipoproteins (HDLs) have anti-inflammatory and antioxidant properties and are potentially cardio-protective. Defective HDL function is caused by alterations in both the proteome and lipidome of HDL particles. As potential biomarkers, the development of analytical methods is necessary for the enrichment of HDLs. Therefore, a method for selective enrichment of HDLs using immobilized metal ion affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC) is presented. SPE-based isolation of HDLs from whole serum is adopted as an alternative to traditional ultracentrifugation methods followed by SDS–PAGE. The enrichment mechanism relies on isoelectric points of lipoproteins and metal oxide. Negatively charged lipoprotein particles interact with positively charged metal oxides and IMAC affinity, which acts as a cation. Identified proteins from HDL through MALDI–MS analysis are apo AI, AII, AIV, CI, CIII, E, J, M, H, serum amyloid A and other nonapoproteins that are part of HDL particles and perform cellular functions. This serum-based proteomics approach gives insight into the functional role of HDL. HDL-associated phospholipids have also been analyzed by LDI–MS. Results suggest that the adopted analytical strategy is a feasible idea to extract lipoproteins from serum. A comparative study of healthy and diseased samples using this approach will provide valuable information in future. 相似文献
We assume generalized ghost Pilgrim dark energy (GGPDE) model in the presence of cold dark matter in flat FRW universe. With suitable choice of interaction term between GGPDE and cold dark matter, we investigate the nature of equation of state parameter for GGPDE. Also, we investigate the natures of dynamical scalar field models (such as quintessence, tachyon, k-essence, and dilaton dark energy) and concerned potentials through the correspondence phenomenon between GGPDE and these models. 相似文献
l-asparaginase (LA) catalyzes the degradation of asparagine, an essential amino acid for leukemic cells, into ammonia and aspartate. Owing to its ability to inhibit protein biosynthesis in lymphoblasts, LA is used to treat acute lymphoblastic leukemia (ALL). Different isozymes of this enzyme have been isolated from a wide range of organisms, including plants and terrestrial and marine microorganisms. Pieces of information about the three-dimensional structure of l-asparaginase from Escherichia coli and Erwinia sp. have identified residues that are essential for catalytic activity. This review catalogues the major sources of l-asparaginase, the methods of its production through the solid state (SSF) and submerged (SmF) fermentation, purification, and characterization as well as its biological roles. In the same breath, this article explores both the past and present applications of this important enzyme and discusses its future prospects. 相似文献
Peristaltic pumping of Sisko fluid through the non-uniform asymmetric channel is addressed. Main motivations are given to nonlinear radiation and inclined magnetic field.
The perturbation technique and lubrication approach are utilized for development of governing problems and solutions. Resulting equations are solved for velocity, temperature, pressure and stream function. Trapping phenomenon is also observed. Variation of pertinent parameters is plotted and illustrated physically. The larger inclination of the magnetic field leads to a rise in velocity. Moreover, the size of trapping bolus tends to reduce and finally disappears for the larger fluid parameter. To our knowledge, such attempt for linear radiation and without inclined magnetic field does not exist even for both symmetric and asymmetric channels. Further it should be noted that problem remains nonlinear even after utilizing long wavelength and low Reynolds number assumptions.