首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6547篇
  免费   165篇
  国内免费   43篇
化学   4481篇
晶体学   56篇
力学   159篇
数学   779篇
物理学   1280篇
  2022年   39篇
  2021年   75篇
  2020年   109篇
  2019年   96篇
  2018年   65篇
  2017年   65篇
  2016年   122篇
  2015年   113篇
  2014年   127篇
  2013年   265篇
  2012年   378篇
  2011年   458篇
  2010年   197篇
  2009年   188篇
  2008年   362篇
  2007年   401篇
  2006年   377篇
  2005年   363篇
  2004年   332篇
  2003年   287篇
  2002年   272篇
  2001年   136篇
  2000年   132篇
  1999年   79篇
  1998年   61篇
  1997年   60篇
  1996年   77篇
  1995年   75篇
  1994年   69篇
  1993年   73篇
  1992年   67篇
  1991年   50篇
  1990年   54篇
  1989年   59篇
  1988年   59篇
  1987年   47篇
  1986年   39篇
  1985年   62篇
  1984年   51篇
  1983年   52篇
  1982年   75篇
  1981年   48篇
  1980年   53篇
  1979年   42篇
  1978年   48篇
  1977年   38篇
  1976年   49篇
  1975年   61篇
  1974年   38篇
  1973年   46篇
排序方式: 共有6755条查询结果,搜索用时 140 毫秒
61.
62.
63.
64.
65.
We report the first high pressure129I Mössbauer measurements with elemental iodine at pressures to 30 GPa. A 20 mg/cm2 129I2 absorber was mounted in a diamond anvil cell with an effective diameter of 0.21 mm. The source used was Mg3 129mTeO6. Experiments were performed mainly at 4 K and the pressure was monitored by the ruby fluorescence method. With increasing pressure we observe a gradual decrease in ¦e2qQ¦ and an increase in IS and values of the low pressure, molecular phase; at 16 GPa a new phase (HP1) is detected characterized by a change in sign of e2qQ and a smaller value of ¦e2qQ¦, and a substantial increase in . At 24 GPa a new phase (HP2) is formed that is characterized by a smaller value of . In general the population of the molecular phase decreases from 1.0 near 15 GPa to a value of 0.4 at 30 GPa. The fraction of the high pressure phase (HP1 + HP2) increases at the expense of the molecular phase and that of the HP2 at the expense of the HP1 phase. These observations are discussed in relation to the onset of a metallic phase near 16 GPa and recent x-ray diffraction studies.Work performed under the auspices of the U.S. Department of Energy.  相似文献   
66.
Rotationally resolved S(1) <-- S(0) electronic spectra of 1,2-dimethoxybenzene (DMB) and its water complex have been observed and assigned. The derived values of the rotational constants show that the bare molecule has a planar heavy-atom structure with trans-disposed methoxy groups in its ground and excited electronic states. The transition of DMB is polarized along the b-axis bisecting the methoxy groups, demonstrating that its S(1) state is an (1)L(b) state. Higher energy bands of DMB are also polarized along the b-axis and have been tentatively assigned to different vibrational modes of the (1)L(b) state. The water complex origin appears 127 cm(-1) to the blue of the bare molecule origin. Analyses of the high resolution spectra of DMB/H(2)O and DMB/D(2)O suggest that the water molecule is attached via two O-H...O hydrogen bonds to the methoxy groups in both electronic states. A tunneling motion of the attached water molecule is revealed by a splitting of these spectra into two subbands. Potential barriers to this motion have been determined.  相似文献   
67.
The nitridation of Si(100) by ammonia and the subsequent oxidation of the nitrided surface by both gaseous atomic and molecular oxygen was investigated under ultrahigh vacuum (UHV) conditions using X-ray photoelectron spectroscopy (XPS). Nitridation of Si(100) by the thermal decomposition of NH3 results in the formation of a subsurface nitride and a decrease in the concentration of surface dangling bond sites. On the basis of changes in the N1s spectra obtained after NH3 adsorption and decomposition, we estimate that the nitride resides about four to five layers below the vacuum-solid interface and that the concentration of surface dangling bonds after nitridation is only 59% of its value on Si(100)-(2 x 1). Oxidation of the nitrided surface is found to produce an oxide phase that remains in the outer layers of the solid and interacts only weakly with the underlying nitride for oxygen coverages up to 2.5 ML. Slight changes in the N1s spectra observed after oxidizing at 300 K are suggested to arise primarily from the introduction of strain within the nitride, and by the formation of a small amount of Si2=N-O species near the nitride-oxide interface. The nitrogen bonding environment changes negligibly after oxidizing at 800 K, which is indicative of greater phase separation at elevated surface temperature. Nitridation is also found to significantly reduce the reactivity of the Si(100) surface toward both atomic and molecular oxygen. A comparison of the oxygen uptake on the clean and nitrided surfaces shows quantitatively that the decrease in dangling bond concentration is responsible for the reduced activity of the nitrided surface toward oxidation, and therefore that dangling bonds are the initial adsorption site for both gaseous oxygen atoms and molecules. Increasing the surface temperature is found to promote the uptake of oxygen when O2 is used as the oxidant, but brings about only a small enhancement in the uptake of gaseous O-atoms. The different effects of surface temperature on the uptake of O versus O2 are interpreted in terms of the efficiency at which dangling bond pairs are regenerated on the surface at elevated temperature and the different site requirements for the adsorption of O and O2.  相似文献   
68.
One-electron oxidation of N-heterocyclic carbenes (NHCs) has been carried out using oxidising agents such as tetracyanoethylene (TCNE) and ferrocenium [Cp(2)Fe](+); the formation of carbene radical cations is postulated.  相似文献   
69.
Bell JH  Pratt RF 《Inorganic chemistry》2002,41(10):2747-2753
Although aryl hydroxamic acids are well-known to form coordination complexes with vanadate (V(V)), the nature of these complexes at neutral pH and submillimolar concentrations, the conditions under which such complexes inhibit various serine amidohydrolases, is not well established. A series of qualitative and quantitative experiments, involving UV/vis, (1)H NMR, and (51)V NMR spectroscopies, established that both 1:1 and 1:2 vanadate/hydroxamate complexes form at pH 7.5, with the former dominating at submillimolar concentrations. Formation constants for the complexes of several aryl and alkyl hydroxamic acids were determined; for example, for benzohydroxamic acid, the stepwise formation constants of the 1:1 and 1:2 complexes were 3000 and 400 M(-1), respectively. The (51)V chemical shift of the 1:1 4-nitrobenzohydroxamic acid complex was -497 ppm, and that of its unsubstituted analogue was -498 ppm. A (1)H-(15)N HSQC spectrum of the 4-nitrobenzo-(15)N-hydroxamic acid/vanadate complex indicated the presence of an N-H group with (15)N and (1)H chemical shifts of 115 and 5.83 ppm, respectively. A (13)C NMR spectrum of the complex of 4-nitrobenzo-(13)C-hydroxamic acid with vanadate displayed a resonance at 170.1 ppm and thus a coordination-induced shift (CIS) of +3.8 ppm. In contrast, the CIS value of an established 1:2 complex, thought to contain chelated hydroxamic acid ligands, was +11.9 ppm. These spectral data led to the following structural picture of 1:1 complexes of vanadate and aryl hydroxamic acids. They contain penta- or hexa-coordinated vanadium. The ligand is in the hydroxamate rather than hydroximate form. The ligand is presumably bound to vanadium through the hydroxamic hydroxyl oxygen, but the hydroxamic acid carbonyl oxygen interacts weakly with vanadium. These species are the most likely candidates for the inhibitors of serine amidohydrolases found in vanadate/hydroxamic acid mixtures.  相似文献   
70.
Metalation of covalent organic frameworks (COFs) is a critical strategy to functionalize COFs for advanced applications yet largely relies on the pre-installed specific metal docking sites in the network, such as porphyrin, salen, 2,2′-bipyridine, etc. We show in this study that the imine linkage of simple imine-based COFs, one of the most popular COFs, readily chelate transition metal (Ir in this work) via cyclometalation, which has not been explored before. The iridacycle decorated COF exhibited more than 10-fold efficiency enhancement in (photo)catalytic hydrogen evolution from aqueous formate solution than its molecular counterpart under mild conditions. This work will inspire more functional cyclometallated COFs to be explored beyond catalysis considering the large imine COF library and the rich metallacycle chemistry.

This study describes cyclometallation as a new metal binding mode for imine-based COFs. The iridacycle decorated COF could be used for catalytic hydrogen evolution from aqueous formate solution with high stability and high efficacy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号