首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
化学   9篇
物理学   16篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2015年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
11.

Background

The present study used event-related brain potentials to investigate semantic, phonological and syntactic processes in adult German dyslexic and normal readers in a word reading task. Pairs of German words were presented one word at a time. Subjects had to perform a semantic judgment task (house – window; are they semantically related?), a rhyme judgment task (house – mouse; do they rhyme?) and a gender judgment task (das – Haus [the – house]; is the gender correct? [in German, house has a neutral gender: das Haus]).

Results

Normal readers responded faster compared to dyslexic readers in all three tasks. Onset latencies of the N400 component were delayed in dyslexic readers in the rhyme judgment and in the gender judgment task, but not in the semantic judgment task. N400 and the anterior negativity peak amplitudes did not differ between the two groups. However, the N400 persisted longer in the dyslexic group in the rhyme judgment and in the semantic judgment tasks.

Conclusion

These findings indicate that dyslexics are phonologically impaired (delayed N400 in the rhyme judgment task) but that they also have difficulties in other, non-phonological aspects of reading (longer response times, longer persistence of the N400). Specifically, semantic and syntactic integration seem to require more effort for dyslexic readers and take longer irrespective of the reading task that has to be performed.
  相似文献   
12.
15N NMR relaxation and 129Xe NMR chemical shift measurements offer complementary information to study weak protein-protein interactions. They have been applied to study the oligomerization equilibrium of a low-molecular-weight protein tyrosine phosphatase in the presence of 50 mM arginine and 50 mM glutamic acid. These experimental conditions are shown to enhance specific protein-protein interactions while decreasing nonspecific aggregation. In addition, 129Xe NMR chemical shifts become selective reporters of one particular oligomer in the presence of arginine and glutamic acid, indicating that a specific Xe binding site is created in the oligomerization process. It is suggested that the multiple effects of arginine and glutamic acid are related to their effective excluded volume that favors specific protein association and the destabilization of partially unfolded forms that preferentially interact with xenon and are responsible for nonspecific protein aggregation.  相似文献   
13.
14.
We investigated dibenzo[a,h]thianthrene molecules adsorbed on ultrathin layers of NaCl using a combined low-temperature scanning tunneling and atomic force microscope. Two stable configurations exist corresponding to different isomers of free nonplanar molecules. By means of excitations from inelastic electron tunneling we can switch between both configurations. Atomic force microscopy with submolecular resolution allows unambiguous determination of the molecular geometry, and the pathway of the interconversion of the isomers. Our investigations also shed new light on contrast mechanisms in scanning tunneling microscopy.  相似文献   
15.
16.
17.
We correct the crystal structure of MnF3, of which the space group was reported as monoclinic C2/c (no. 15) with a = 8.9202, b = 5.0472, c = 13.4748 Å, β = 92.64°, V = 606.02 ų, Z = 12, mS48, T not given, likely 298 K. In the structure model proposed here, we use a unit cell of one third of the former volume. The ruby red crystals of MnF3 were synthesized by a high-pressure/high-temperature method, where MnF4 was used as a starting material. As determined on a single crystal, MnF3 crystallizes in the monoclinic space group I2/a (no. 15) with a = 5.4964(11), b = 5.0084(10), c = 7.2411(14) Å, β = 93.00(3)°, V = 199.06(7) Å3, Z = 4, mS16, T = 183(2) K. The crystal structure of MnF3 is related by a direct group-subgroup transition to the VF3 structure-type. We performed quantum chemical calculations on the crystal structure to allow the assignment of bands of the obtained vibrational spectra.  相似文献   
18.
The crystal structure of β-MnF4 has finally been elucidated. It crystallizes in the non-centrosymmetric space group R3c, no. 161, hR360, with the lattice parameters a = 19.390(3), c = 12.940(3) Å, V = 4213.3(14) Å3, Z = 72, T = 100 K. It is a 4a × 4a superstructure of the VF3 (FeF3) structure type. The Mn atoms are coordinated octahedron-like by F atoms, of which two are bound terminal, while the other act as μ-bridging F atoms to other Mn atoms forming a three-dimensional infinite network structure which can be described by the Niggli formula 3[MnF4/2F2/1]. Voids on the metal sites, which are occupied in the VF3 structure, are grouped together in the shape of a “star” with approximate D3h symmetry. We prepared β-MnF4 photochemically according to the literature and obtained a phase-pure powder as evidenced by X-ray diffraction at room temperature. The lattice parameters are a = 19.566(3), c = 12.984(2) Å, V = 4304(1) Å3. IR and Raman spectra recorded on the powder show that β-MnF4 has also been obtained free of moisture, HF, and O2+ containing compounds, however MnF3 is likely present as a magnetic impurity. We observe thermal decomposition of MnF4 to MnF2 and not MnF3.  相似文献   
19.
The adsorption geometry and the electronic structure of a Blatter radical derivative on a gold surface were investigated by a combination of high‐resolution noncontact atomic force microscopy and scanning tunneling microscopy. While the hybridization with the substrate hinders direct access to the molecular states, we show that the unpaired‐electron orbital can be probed with Ångström resolution by mapping the spatial distribution of the Kondo resonance. The Blatter derivative features a peculiar delocalization of the unpaired‐electron orbital over some but not all moieties of the molecule, such that the Kondo signature can be related to the spatial fingerprint of the orbital. We observe a direct correspondence between these two quantities, including a pronounced nodal plane structure. Finally, we demonstrate that the spatial signature of the Kondo resonance also persists upon noncovalent dimerization of molecules.  相似文献   
20.
Ultrathin insulating NaCl films have been employed to decouple individual pentacene molecules electronically from the metallic substrate. This allows the inherent electronic structure of the free molecule to be preserved and studied by means of low-temperature scanning-tunneling microscopy. Thereby direct images of the unperturbed molecular orbitals of the individual pentacene molecules are obtained. Elastic scattering quantum chemistry calculations substantiate the experimental findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号