首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   0篇
化学   69篇
数学   6篇
物理学   28篇
  2022年   1篇
  2021年   5篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   8篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   11篇
  2007年   4篇
  2006年   8篇
  2005年   6篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1983年   1篇
  1978年   1篇
  1975年   2篇
  1962年   1篇
  1959年   1篇
  1958年   3篇
  1956年   2篇
  1938年   2篇
  1936年   2篇
  1933年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
71.

Different topical hemostatic materials are used to achieve effective hemostasis. High hemostatic activity, biocompatibility, bioresorbability, and easy manipulation are to be expected in such a developed product. In the surgical world with these specific requirements, finding a proper hemostatic agent is very difficult. The study compared several materials of various construction properties, which were assessed for structural and related properties by morphological analyses and assessed in vivo for their efficiency and behaviour using a model of rat partial nephrectomy. New sodium salt of carboxymethyl cellulose (CMC) sponge with the lowest porosity and free swell absorptive capacity contained the highest amount of hydroxyl and carboxyl groups. Results revealed that this CMC material in the form of a bioresorbable sponge may ensure the necessary hemostatic effects, while also providing a positive influence on the reaction of the local tissue. The CMC material also needed significantly less time to achieve hemostasis (p?<?0.001). Moreover, the sponge reached satisfactory results in the histopathological evaluation with the lowest destruction score and favorable healing reaction. This modified product proved itself to be a promising bioresorbable hemostat, which, according to its design, matches with its surgical applications. In general, the obtained data elucidated the dependency of the total effect on its structure and composition.

Graphic abstract
  相似文献   
72.
If G is a graph with p vertices and at least one edge, we set φ (G) = m n max |f(u) ? f(v)|, where the maximum is taken over all edges uv and the minimum over all one-to-one mappings f : V(G) → {1, 2, …, p}: V(G) denotes the set of vertices of G.Pn will denote a path of length n whose vertices are integers 1, 2, …, n with i adjacent to j if and only if |i ? j| = 1. Pm × Pn will denote a graph whose vertices are elements of {1, 2, …, m} × {1, 2, …, n} and in which (i, j), (r, s) are adjacent whenever either i = r and |j ? s| = 1 or j = s and |i ? r| = 1.Theorem.If max(m, n) ? 2, thenφ(Pm × Pn) = min(m, n).  相似文献   
73.
74.
75.
76.
A short synthetic route is outlined, starting from bromo-BN derivatives, via halogen lithium exchange, subsequent Michael reaction with dimethylaminoacrolein, hydrolysis to the corresponding aldehyde, and final condensation with a benzothiazolium unit to produce a BN-pentamethinium system, which absorbs in the visible range around 450 nm. Enantiopure ligands show a decent Cotton effect in the CD spectrum. Preliminary data show potential of these compounds in the area of supramolecular chemistry (enantioselective recognition) and also for medicinal application (induction of apoptosis). [reaction: see text]  相似文献   
77.
The distribution of methylmercury, ethylmercury and phenylmercury species between aqueous phases and pure carbon tetrachloride or dithizone solutions in carbon tetrachloride has been studied in detail. The stability constants of the chloride complexes and the extraction constants are reported. The influence of 16 masking agents at various pH values has been investigated; the distribution data found experimentally are compared with the calculated results.  相似文献   
78.
Depending on their concentrations the surface-active substances, tensides (surfactants) can positively or negatively influence the drug absorption, which is widely used in the design of the dosage forms with controlled release. A problem is that the (in-vivo) rate of absorption cannot be directly measured and for that reason, it is frequently substituted by evaluation of the (in-vitro) dissolution. On other hand, a suitably designed pharmacokinetic model can directly predict virtually all pharmacokinetic quantities including both the rate of absorption and fraction of the dose reaching the blood circulation. The paper presents a new approach to the analysis of the rate of drug absorption and shows its superiority over traditional in-vivo approaches. Both the in-vivo analysis and model-based prediction of the tenside (monolaurin of sucrose) influence on the rate of absorption of the drug (sulfathiazole) after instantaneous per-oral administration to rats are discussed. It was found that 0.001% solution of tenside can increase the rate of absorption by cca 50% and a two-fold increase in absolute bioavailability can be reached. Attention is also devoted to the formal requirements laid on the model’s structure and its identifiability. The systematic design, substantiation and validation of a parsimonious predictive model that confirms in-vivo results are presented. The match between in-vivo observations and model-based predictions is demonstrated. The frequently overlooked metaphysics lying behind the compartmental modelling is briefly explained.  相似文献   
79.
Arsenic (III), respectively arsenic(V) after the reduction were determined in model solutions and some inorganic and organic materials by fast scan differential pulse cathodic stripping voltammetry and by direct current cathodic stripping voltammetry with a rapid increase of potential. The accumulation on a hanging mercury drop electrode followed by cathodic stripping was carried out in 0.7–0.8M HCl or 1–2M H2SO4 solutions containing Cu(II)-ions. Detection limits calculated from regression parameters was determined to be under 1 ng/ml for the samples containing very low arsenic concentrations. The relative standard deviation did not reach 8% for arsenic contents about of 5 ng/ml.  相似文献   
80.
Commensal bacterium Clostridium paraputrificum J4 produces several extracellular chitinolytic enzymes including a 62 kDa chitinase Chit62J4 active toward 4-nitrophenyl N,N′-diacetyl-β-d-chitobioside (pNGG). We characterized the crude enzyme from bacterial culture fluid, recombinant enzyme rChit62J4, and its catalytic domain rChit62J4cat. This major chitinase, securing nutrition of the bacterium in the human intestinal tract when supplied with chitin, has a pH optimum of 5.5 and processes pNGG with Km = 0.24 mM and kcat = 30.0 s−1. Sequence comparison of the amino acid sequence of Chit62J4, determined during bacterial genome sequencing, characterizes the enzyme as a family 18 glycosyl hydrolase with a four-domain structure. The catalytic domain has the typical TIM barrel structure and the accessory domains—2x Fn3/Big3 and a carbohydrate binding module—that likely supports enzyme activity on chitin fibers. The catalytic domain is highly homologous to a single-domain chitinase of Bacillus cereus NCTU2. However, the catalytic profiles significantly differ between the two enzymes despite almost identical catalytic sites. The shift of pI and pH optimum of the commensal enzyme toward acidic values compared to the soil bacterium is the likely environmental adaptation that provides C. paraputrificum J4 a competitive advantage over other commensal bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号