首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   10篇
化学   108篇
力学   5篇
数学   32篇
物理学   52篇
  2023年   5篇
  2022年   7篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   4篇
  2013年   9篇
  2012年   11篇
  2011年   12篇
  2010年   12篇
  2009年   12篇
  2008年   8篇
  2007年   11篇
  2006年   9篇
  2005年   6篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1993年   5篇
  1992年   1篇
  1989年   3篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   6篇
  1979年   1篇
  1974年   2篇
排序方式: 共有197条查询结果,搜索用时 31 毫秒
31.
The electric organs of electric fish have been used extensively for the study of peripheral cholinergic synapses. Aluminum and silicon have been observed in the electrocytes of Psammobatis extenta, a fish belonging to the family Rajidae, using a combination of scanning electron microscopy and X-ray spectrometry. Based on this evidence, the presence of silica minerals has been documented by means of mineralogical techniques. Electric organ cryostat sections and subcellular fractions were observed using a Leica DMLP mineralogical microscope. The shape, size and color, among other properties, were analyzed in plane-polarized light, while birefringence and the extinction angle, which allow for mineral identification, were observed through crossed-polarized illumination. The distribution of chalcedony, an oxide silicon mineral, in the sections and all the fractions of the electric organ was recorded. X-ray diffraction analysis of the electric organ segments showed a similar result, with a low-quartz variety. Chalcedony precipitation occurred at a specific pH (7-8) and oxidation potential (Eh; 0.0 to -0.2). This observation supports the important role played by pH and Eh conditions in silica precipitation in electrocytes, as has been reported in geological environments. It is possible that silica formation and silica degradation in electric organs are also related to the enzymes, silicatein and silicase, that direct the polymerization and depolymerization of amorphous silica in sponges. Carbonic anhydrases (silicase) are involved in physiological pH regulation. Crystallization of chalcedony via spiral growth from a partially polymerized fluid is consistent with processes known to occur in organic systems. This is the first time that a biogenically produced crystalline mineral phase (i.e., chalcedony) has been observed in the electrocytes and cholinergic nerves from living electric fish.  相似文献   
32.
Fast neurotransmission involves the operation of ionotropic receptors, which are multi-subunit proteins that respond to activation by opening an integral ion channel. Examples of such channels include the GABA(A) receptor, the 5-HT(3) receptor and the P2X receptor for ATP. These receptors contain more than one type of subunit, although the exact subunit stoichiometry and arrangement around the receptor rosette is often unknown. We are using atomic force microscopy (AFM) of purified receptors to address these issues. Measurement of the molecular volume of the receptor permits the determination of the number of subunits that it contains. Furthermore, analysis of the geometry of complexes between receptors and subunit-specific antibodies reveals the subunit arrangement. Our AFM-based approach has so far been dependent on manual data processing, which is both time-consuming and prone to operator bias. In this study, we set out to develop a novel method capable of automatic segmentation and quantitative analysis of both single receptor particles and receptor-antibody complexes. The method was validated using images of wild type and mutant forms of the P2X(6) receptor. We suggest that the automated method will greatly facilitate further progress in the use of AFM for the determination of receptor and multi-protein architecture.  相似文献   
33.
Structural and morphological behavior under stress–strain of polypropylene/multi‐walled carbon nanotubes (PP/MWCNTs) nanocomposites prepared through ultrasound‐assisted melt extrusion process was studied by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, small angle X‐ray scattering (SAXS), and wide angle X‐ray scattering (WAXS). A high ductile behavior was observed in the PP/MWCNT nanocomposites with low concentration of MWCNTs. This was related to an energy‐dissipating mechanism, achieved by the formation of an ordered PP‐CNTs interphase zone and crystal oriented structure in the undeformed samples. Different strain‐induced‐phase transformations were observed by ex situ SAXS/WAXS, characterizing the different stages of structure development during the deformation of PP and PP/MWCNTs nanocomposites. The high concentration of CNTs reduced the strain behavior of PP due to the agglomeration of nanoparticles. A structural pathway relating the deformation‐induced phase transitions and the dissipation energy mechanism in the PP/MWCNTs nanocomposites at low concentration of nanoparticles was proposed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 475–491  相似文献   
34.
Technetium is a synthetic element with no stable isotopes, produced as waste in nuclear power plants and in cyclotrons used for nuclear medicine. The element has high mobility, in the form of TcO4; its determination is therefore important for environmental protection. Technetium is found in low concentrations and therefore common methods for its analysis include long treatments in several steps and require large amounts of reagents for its purification and preconcentration. Plastic scintillation resins (PSresin) are novel materials used to separate, preconcentrate and measure radionuclides in a single step. The objective of this study is to prepare and characterise a PSresin for the preconcentration and measurement of 99Tc. The study first evaluates the reproducibility of the production of PSresins between batches and over time; showing good reproducibility and storage stability. Next, we studied the effect of some common non-radioactive interferences, showing small influences on measurement, and radioactive interferences (36Cl and 238U/234U). 36Cl can be removed by a simple treatment with 0.5 M HCl and 238U/234U can be removed from the column by cleaning with a mixture of 0.1 M HNO3 and 0.1 M HF. In the latter case, a slight change in the morphology of the PSresin caused an increase in detection efficiency. Finally, the PSresin was applied to the measurement of real spiked samples (sea water and urine) with deviations lower than 10% in all cases.  相似文献   
35.
We are proposing for the first time the use of a Nafion/multi-walled carbon nanotubes dispersion deposited on glassy carbon electrodes (GCE) as a new platform for developing enzymatic biosensors based on the self-assembling of a chitosan derivative and different oxidases. The electrodes are obtained by deposition of a layer of Nafion/multi-wall carbon nanotubes dispersion on glassy carbon electrodes, followed by the adsorption of a chitosan derivative as polycation and glucose oxidase, l-aminoacid oxidase or polyphenol oxidase, as polyanions and biorecognition elements. The optimum configuration for glucose biosensors has allowed a highly sensitive (sensitivity = (0.28 ± 0.02) μA mM−1, r = 0.997), fast (4 s in reaching the maximum response), and highly selective (0% interference of ascorbic acid and uric acid at maximum physiological levels) glucose quantification at 0.700 V with detection and quantification limits of 0.035 and 0.107 mM, respectively. The repetitivity for 10 measurements was 5.5%, while the reproducibility was 8.4% for eight electrodes. The potentiality of the new platform was clearly demonstrated by using the carbon nanotubes/Nafion layer as a platform for the self-assembling of l-aminoacid oxidase and polyphenol oxidase. Therefore, the platform we are proposing here, that combines the advantages of nanostructured materials with those of the layer-by-layer self-assembling of polyelectrolytes, opens the doors to new and exciting possibilities for the development of enzymatic and affinity biosensors using different transdution modes.  相似文献   
36.
A Bayesian statistical approach is introduced to assess experimental data from the analyses of radionuclide activity concentration in environmental samples (low activities). A theoretical model has been developed that allows the use of known prior information about the value of the measurand (activity), together with the experimental value determined through the measurement. The model has been applied to data of the Inter-laboratory Proficiency Test organised periodically among Spanish environmental radioactivity laboratories that are producing the radiochemical results for the Spanish radioactive monitoring network. A global improvement of laboratories performance is produced when this prior information is taken into account. The prior information used in this methodology is an interval within which the activity is known to be contained, but it could be extended to any other experimental quantity with a different type of prior information available.  相似文献   
37.
Combined ab initio and grand canonical Monte Carlo simulations have been performed to investigate the dependence of hydrogen storage in single-walled carbon nanotubes (SWCNTs) on both tube curvature and chirality. The ab initio calculations at the density functional level of theory can provide useful information about the nature of hydrogen adsorption in SWCNT selected sites and the binding under different curvatures and chiralities of the tube walls. Further to this, the grand canonical Monte Carlo atomistic simulation technique can model large-scale nanotube systems with different curvature and chiralities and reproduce their storage capacity by calculating the weight percentage of the adsorbed material (gravimetric density) under thermodynamic conditions of interest. The author's results have shown that with both computational techniques, the nanotube's curvature plays an important role in the storage process while the chirality of the tube plays none.  相似文献   
38.
The supercritical mixture ethanol-carbon dioxide (EtOH-CO2) with mole fraction of ethanol X(EtOH) congruent with 0.1 was investigated at 348 K, by employing the molecular dynamics simulation technique in the canonical ensemble. The local intermolecular structure of the fluid was studied in terms of the calculated appropriate pair radial distribution functions. The estimated average local coordination numbers and mole fractions around the species in the mixture reveal the existence of local composition enhancement of ethanol around the ethanol molecules. This finding indicates the nonideal mixing behavior of the mixture due to the existence of aggregation between the ethanol molecules. Furthermore, the local environment redistribution dynamics have been explored by analyzing the time correlation functions (TCFs) of the total local coordination number (solvent, cosolvent) around the cosolvent molecules in appropriate parts. The analysis of these total TCFs in the auto-(solvent-solvent, cosolvent-cosolvent) and cross-(solvent-cosolvent, cosolvent-solvent) TCFs has shown that the time dependent redistribution process of the first solvation shell of ethanol is mainly determined by the redistribution of the CO2 solvent molecules. These results might be explained on the basis of the CO2-CO2 and EtOH-CO2 intermolecular forces, which are sufficiently weaker in comparison to the EtOH-EtOH hydrogen bonding interactions, creating in this way a significantly faster redistribution of the CO2 molecules in comparison with EtOH. Finally, the self-diffusion coefficients and the single reorientational dynamics of both the cosolvent and solvent species in the mixture have been predicted and discussed in relationship with the local environment around the species, which in the case of the EtOH molecules seem to be strongly affected.  相似文献   
39.
Diffusion jumps of small molecules dispersed in chain molecules or other kinds of slow-moving matrices have already been observed in many previous simulations of such systems, and their treatment led to important qualitative conclusions. In the present work, a new, very simple yet effective method is described, allowing for both identification of individual penetrant jump events and their quantitative treatment in a statistical sense. The method is applied in equilibrium Molecular Dynamics simulations for systems of gaseous alkanes, methane through n-butane, including also a mixture of methane and n-butane, dispersed in n-decane or n-eicosane. Equilibration and attainment of a linear diffusion regime is confirmed by means of various criteria, and the jumps detection method is applied to all systems studied. The results obtained clearly show the existence of distinct jump events in all cases, although the average jump length is reduced with penetrant or liquid alkane molecular weight. The method allows one to determine the average jump length and the corresponding jumps frequency. On the basis of these results, it was possible to estimate a random walk type diffusion coefficient, D(s,jumps), of the penetrants, which was found to be substantially lower compared with the overall diffusion coefficient D(s,MSD) obtained by the mean square displacement method. This finding led us to assume that the overall penetrants' diffusion in the studied systems is a combination of longer jumps with a smoother and more gradual displacement, a result that confirms assumptions suggested in previous studies.  相似文献   
40.
In this paper, we prove following: If GPU (2, 1) is an infinite, discrete group, acting on P2 without complex invariant lines, then the component containing ℍP2 of the domain of discontinuity Ω(G) = PP2∖ Λ (G), according to Kulkarni, is G-invariant complete Kobayashi hyperbolic. The authors were supported by the Universidad Autónoma de Yucatán and the Universidad Nacional Autónoma de México.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号