首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1892篇
  免费   112篇
  国内免费   12篇
化学   1442篇
晶体学   28篇
力学   52篇
数学   94篇
物理学   400篇
  2024年   4篇
  2023年   16篇
  2022年   41篇
  2021年   47篇
  2020年   46篇
  2019年   52篇
  2018年   31篇
  2017年   39篇
  2016年   75篇
  2015年   62篇
  2014年   91篇
  2013年   147篇
  2012年   161篇
  2011年   178篇
  2010年   104篇
  2009年   83篇
  2008年   129篇
  2007年   104篇
  2006年   101篇
  2005年   79篇
  2004年   93篇
  2003年   64篇
  2002年   54篇
  2001年   41篇
  2000年   36篇
  1999年   15篇
  1998年   10篇
  1997年   7篇
  1996年   18篇
  1995年   10篇
  1994年   11篇
  1993年   10篇
  1992年   13篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有2016条查询结果,搜索用时 0 毫秒
121.
Nucleophilic allyl platinum addition to hydrazones under platinum-catalyzed conditions was studied. To generate nucleophilic allyl platinum complexes, allyl halides were employed with platinum complexes, SnCl(2), and H(2). The allyl platinum(IV) intermediates reacted with the hydrazone to give the corresponding cyclic amine derivatives in good yield and with excellent diastereoselectivity. The cis selectivity of N-tethered substrates was attributed to a tight interaction of allyl platinum species with the hydrazone, on the basis of the results of solvent screening and acid/base addition experiments.  相似文献   
122.
Quaternary ammonium compounds have been considered as excellent antibacterial agents due to their effective biocidal activity, long term durability and environmentally friendly performance. In this work, 3-(trimethoxysilyl)-propyldimethyloctadecylammonium chloride as a quaternary ammonium silane was applied for the surface modification of silica nanoparticles. The quaternary ammonium silane provided silica surface with hydrophobicity and antibacterial properties. In addition, the glass surface which was coated with the surface modified silica nanoparticles presented bacterial growth inhibition activity. For comparison of bacterial growth resistance, hydrophobic silane (alkyl functionalized silane) modified silica nanoparticles and pristine silica nanoparticles were prepared. As a result of bacterial adhesion test, the quaternary ammonium functionalized silica nanoparticles exhibited the enhanced inhibition performance against growth of Gram-negative Escherichia coli (96.6%), Gram-positive Staphylococcus aureus (98.5%) and Deinococcus geothermalis (99.6%) compared to pristine silica nanoparticles. These bacteria resistances also were stronger than that of hydrophobically modified silica nanoparticles. It could be explained that the improved bacteria inhibition performance originated from the synergistic effect of hydrophobicity and antibacterial property of quaternary ammonium silane. Additionally, the antimicrobial efficacy of the fabricated nanoparticles increased with decreasing size of the nanoparticles.  相似文献   
123.
We investigated the mechanism of spontaneous cholesterol efflux induced by acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibition, and how an alteration of cholesterol metabolism in macrophages impacts on that in HepG2 cells. Oleic acid anilide (OAA), a known ACAT inhibitor reduced lipid storage substantially by promotion of cholesterol catabolism and repression of cholesteryl ester accumulation without further increase of cytotoxicity in acetylated low-density lipoprotein-loaded THP-1 macrophages. Analysis of expressed mRNA and protein revealed that cholesterol 7alpha-hydroxylase (CYP7A1), oxysterol 7alpha- hydroxylase (CYP7B1), and cholesterol 27-hydroxylase (CYP27) were highly induced by ACAT inhibition. The presence of a functional cytochrome P450 pathway was confirmed by quantification of the biliary cholesterol mass in cell monolayers and extracelluar medium. Notably, massively secreted biliary cholesterol from macrophages suppressed the expression of CYP7 proteins in a farnesoid X receptor (FXR)-dependent manner in HepG2 cells. The findings reported here provide new insight into mechanisms of spontaneous cholesterol efflux, and suggest that ACAT inhibition may stimulate cholesterol-catabolic (cytochrome P450) pathway in lesion-macrophages, in contrast, suppress it in hepatocyte via FXR induced by biliary cholesterol (BC).  相似文献   
124.
A precise understanding of individual cellular processes is essential to meet the expectations of most advanced cell biology. Therefore single-cell analysis is considered to be one of possible approach to overcome any misleading of cell characteristics by averaging large groups of cells in bulk conditions. In the present work, we modified a newly designed microchip for single-cell analysis and regulated the cell-adhesive area inside a cell-chamber of the microfluidic system. By using surface-modification techniques involving a silanization compound, a photo-labile linker and the 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer were covalently bonded on the surface of a microchannel. The MPC polymer was utilized as a non-biofouling compound for inhibiting non-specific binding of the biological samples inside the microchannel, and was selectively removed by a photochemical reaction that controlled the cell attachment. To achieve the desired single-macrophage patterning and culture in the cell-chamber of the microchannel, the cell density and flow rate of the culture medium were optimized. We found that a cell density of 2.0 × 10(6) cells/ml was the appropriate condition to introduce a single cell in each cell chamber. Furthermore, the macrophage was cultured in a small size of the cell chamber in a safe way for 5 h at a flow rate of 0.2 μl/min under the medium condition. This strategy can be a powerful tool for broadening new possibilities in studies of individual cellular processes in a dynamic microfluidic device.  相似文献   
125.
A new type of fluorescent probe (1) with two triazole groups that are conjugated with a carbazole moiety was synthesized by a Cu(I)-catalyzed alkyne-azide click reaction for the selective and sensitive detection of cyanide via fluorescence enhancement by ligand exchange and metal ion removal.  相似文献   
126.
We synthesized a novel 1,3,5-substituted triethylbenzene derivative with a benzimidazole moiety as a binding and signalling subunit. The triethylbenzene platform was judiciously incorporated into the receptor design such that all the fluorophores are in close proximity to each other in order to facilitate stacking. The advantage of this approach lies in the fact that the receptor will offer a dual channel emission for the multiple ratiometric determination of metal ions. The sensor was tested in a CH3CN/H2O (7:3, v/v, pH 7.1) HEPES buffered solution and successfully developed for the ratiometric and simultaneous estimation of Fe3+ and Cu2+ ions in aqueous samples.  相似文献   
127.
Chemosensors are developed to image zinc ions. Fluorescence enhancement due to Zn2+ binding is an excellent way to detect its presence. A chemosensor for Zn2+ based on dipicolylamine (DPA) groups connected by a pyridyl amide backbone has been synthesized. Addition of 2-chloroacetyl chloride to 2,6-diaminopyridine affords 2,6-bis(chloroethylamido)pyridine, which is converted to the sensor BADPA-P by 2,2′-dipicolylamine displacement of chlorine. This compound along with two others, the mono-DPA, ADPA-P and the benzyl in place of pyridyl, BADPA-B, present three potential Zn2+ sensors. It was found that BADPA-P in the presence of Zn2+ shows a large increase in fluorescence, whether in polar organic or aqueous environments. Its fluorescence in the presence of Cd2+, unlike with Zn2+, is not enhanced when excited at longer wavelengths. Proton NMR measurements, indicate two Zn2+ ions bind to BADPA-P. Also, Zn2+ enhances fluorescence even when other metal ions are present.  相似文献   
128.
Photopolymerizable phospholipid DC(8,9)PC (1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine) exhibits unique assembly characteristics in the lipid bilayer. Because of the presence of the diacetylene groups, DC(8,9)PC undergoes polymerization upon UV (254 nm) exposure and assumes chromogenic properties. DC(8,9)PC photopolymerization in gel-phase matrix lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monitored by UV-vis absorption spectroscopy occurred within 2 min after UV treatment, whereas no spectral shifts were observed when DC(8,9)PC was incorporated into liquid-phase matrix 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Liquid chromatography-tandem mass spectrometry analysis showed a decrease in the amount of DC(8,9)PC monomer in both DPPC and POPC environments without any change in the matrix lipids in UV-treated samples. Molecular dynamics (MD) simulations of DPPC/DC(8,9)PC and POPC/DC(8,9)PC bilayers indicate that the DC(8,9)PC molecules adjust to the thickness of the matrix lipid bilayer. Furthermore, the motions of DC(8,9)PC in the gel-phase bilayer are more restricted than in the fluid bilayer. The restricted motional flexibility of DC(8,9)PC (in the gel phase) enables the reactive diacetylenes in individual molecules to align and undergo polymerization, whereas the unrestricted motions in the fluid bilayer restrict polymerization because of the lack of appropriate alignment of the DC(8,9)PC fatty acyl chains. Fluorescence microscopy data indicates the homogeneous distribution of lipid probe 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine rhodamine B sulfonyl ammonium salt (N-Rh-PE) in POPC/DC(8,9)PC monolayers but domain formation in DPPC/DC(8,9)PC monolayers. These results show that the DC(8,9)PC molecules cluster and assume the preferred conformation in the gel-phase matrix for the UV-triggered polymerization reaction.  相似文献   
129.
We synthesized a novel benzimidazole-based, anthracene-coupled fluorescent receptor capable of recognizing and estimating the concentrations of Fe3+ in semi-aqueous solution by ratiometric estimation. Our sensor can be made highly selective for Fe3+ over other metal ions by changing the solvent composition.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号