首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   14篇
  国内免费   8篇
化学   304篇
晶体学   12篇
力学   23篇
数学   40篇
物理学   190篇
  2023年   6篇
  2022年   17篇
  2021年   16篇
  2020年   7篇
  2019年   17篇
  2018年   22篇
  2017年   27篇
  2016年   27篇
  2015年   17篇
  2014年   26篇
  2013年   60篇
  2012年   42篇
  2011年   52篇
  2010年   42篇
  2009年   41篇
  2008年   19篇
  2007年   24篇
  2006年   16篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   11篇
  2001年   4篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   3篇
  1969年   2篇
  1961年   1篇
  1954年   1篇
排序方式: 共有569条查询结果,搜索用时 15 毫秒
561.
Pentafluorophenylammonium triflate (PFPAT) is used as an efficient catalyst in the von Pechmann condensation of phenols with β-ketoesters leading to the formation of coumarin derivatives. Short reaction times, easy and quick isolation of the products, excellent chemoselectivity, excellent yields and ease of catalyst recovery with consistent activity makes this protocol efficient and environmentally benign.  相似文献   
562.
We investigate the behavior of dark energy interacting with dark matter and unparticle in the framework of loop quantum cosmology. In four toy models, we study the interaction between the cosmic components by choosing different coupling functions representing the interaction. We found that there are only two attractor solutions namely dark energy dominated and dark matter dominated Universe. The other two models are unstable, as they predict either a dark energy filled Universe or one completely devoid of it.  相似文献   
563.
ZnO nanoparticles (NPs) have been successfully synthesized by the simple solution method at low temperature. The effects of annealing temperature on the structure and optical properties of ZnO NPs were investigated in detail by X-ray diffraction, transmission electron microscopy (TEM), ultraviolet–visible (UV–vis) spectroscopy and photoluminescence (PL) measurements. As the annealing temperature was increased above 180 °C the particles morphology evolved from spherical to hexagonal shape, indicating that the average particle size increased from 11 nm to 87 nm. The UV-vis and PL spectra showed a red-shift from 3.62 to 3.33 eV when the annealing temperature was increased.  相似文献   
564.
Voriconazole (VRC) is a broad-spectrum antifungal agent belonging to BCS class II (biopharmaceutical classification system). Despite many efforts to enhance its solubility, this primary issue still remains challenging for formulation scientists. Transethosomes (TELs) are one of the potential innovative nano-carriers for improving the solubility and permeation of poorly soluble and permeable drugs. We herein report voriconazole-loaded transethosomes (VRCT) fabricated by the cold method and followed by their incorporation into carbopol 940 as a gel. The prepared VRCT were evaluated for % yield, % entrapment efficiency (EE), surface morphology, possible chemical interaction, particle size, zeta potential, and polydispersity index (PDI). The optimized formulation had a particle size of 228.2 nm, a zeta potential of −26.5 mV, and a PDI of 0.45 with enhanced % EE. Rheology, spreadability, extrudability, in vitro release, skin permeation, molecular docking, antifungal, and antileishmanial activity were also assessed for VRCT and VRC loaded transethosomal gel (VTEG). Ex-vivo permeation using rat skin depicted a transdermal flux of 22.8 µg/cm2/h with enhanced efficiency up to 4-fold. A two-fold reduction in inhibitory as well as fungicidal concentration was observed against various fungal strains by VRCT and VTEG besides similar results against L-donovani. The development of transethosomal formulation can serve as an efficient drug delivery system through a topical route with enhanced efficacy and better patient compliance.  相似文献   
565.
Background: Type 2 diabetes mellitus (DM2) is a chronic and sometimes fatal condition which affects people all over the world. Nanotherapeutics have shown tremendous potential to combat chronic diseases—including DM2—as they enhance the overall impact of drugs on biological systems. Greenly synthesized silver nanoparticles (AgNPs) from Catharanthus roseus methanolic extract (C. AgNPs) were examined primarily for their cytotoxic and antidiabetic effects. Methods: Characterization of C. AgNPs was performed by UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and atomic force microscopy (AFM). The C. AgNPs were trialed on Vero cell line and afterwards on an animal model (rats). Results: The C. AgNPs showed standard structural and functional characterization as revealed by FTIR and XRD analyses. The zetapotential analysis indicated stability while EDX analysis confirmed the formation of composite capping with Ag metal. The cytotoxic effect (IC50) of C. AgNPs on Vero cell lines was found to be 568 g/mL. The animal model analyses further revealed a significant difference in water intake, food intake, body weight, urine volume, and urine sugar of tested rats after treatment with aqueous extract of C. AgNPs. Moreover, five groups of rats including control and diabetic groups (NC1, PC2, DG1, DG2, and DG3) were investigated for their blood glucose and glycemic control analysis. Conclusions: The C. AgNPs exhibited positive potential on the Vero cell line as well as on experimental rats. The lipid profile in all the diabetic groups (DG1-3) were significantly increased compared with both of the control groups (p < 0.05). The present study revealed the significance of C. AgNPs in nanotherapeutics.  相似文献   
566.
This study aimed to establish the phytochemical profile of Glochidion velutinum and its cytotoxic activity against prostate cancer (PC-3) and breast cancer (MCF-7) cell lines. The phytochemical composition of G. velutinum leaf extract and its fractions was established with the help of total phenolic and flavonoid contents and LC-MS/MS-based metabolomics analysis. The crude methanolic extract and its fractions were studied for pharmacological activity against PC-3 and MCF-7 cell lines using the MTT assay. The total phenolic content of the crude extract and its fractions ranged from 44 to 859 µg GAE/mg of sample whereas total flavonoid contents ranged from 20 to 315 µg QE/mg of sample. A total of forty-eight compounds were tentatively dereplicated in the extract and its fractions. These phytochemicals included benzoic acid derivatives, flavans, flavones, O-methylated flavonoids, flavonoid O- and C-glycosides, pyranocoumarins, hydrolysable tannins, carbohydrate conjugates, fatty acids, coumarin glycosides, monoterpenoids, diterpenoids, and terpene glycosides. The crude extract (IC50 = 89 µg/mL), the chloroform fraction (IC50 = 27 µg/mL), and the water fraction (IC50 = 36 µg/mL) were found to be active against the PC-3 cell line. However, the crude extract (IC50 = 431 µg/mL), the chloroform fraction (IC50 = 222 µg/mL), and the ethyl acetate fraction (IC50 = 226 µg/mL) have shown prominent activity against breast cancer cells. Moreover, G. velutinum extract and its fractions presented negligible toxicity to normal macrophages at the maximum tested dose (600 µg/mL). Among the compounds identified through LC-MS/MS-based metabolomics analysis, epigallocatechin gallate, ellagic acid, isovitexin, and rutin were reported to have anticancer activity against both prostate and breast cancer cell lines and might be responsible for the cytotoxic activities of G. velutinum extract and its bioactive fractions.  相似文献   
567.
This work presents the effect of driven nickel nanoparticles (NiNPs) towards the surface of (PS-PANI)/NiNPs nanocomposite upon the application of a uniform magnetic field. The purpose is to obtain distinguishable optoelectronic and electrical properties. This process increases the surface roughness and its reactivity, and enables the tuning of the optical and electrical properties. Based on the results from X-ray photoelectron and Fourier-transform infrared spectroscopies, the magnetically-driven NiNPs to the surface are oxidized, forming NiONPs and NiOHNPs. This oxidation effect transforms the surface from a hydrophilic to a hydrophobic state. In addition, the optical bandgap energy decreases from 4.04 to 3.77 eV, and the electrical conductivity increases from 12.77 μS/cm to 57.80 μS/cm and 77.52 μS/cm, for 50 and 100 mT magnetic fields, respectively, which is attributed to the well-dispersed magnetic nanoparticles in the PS-PANI polymer matrix, resulting in a high homogeneous nanocomposite film.  相似文献   
568.
If we define, roughly, linear symmetries as those symmetries which lead to linear relationships among scattering amplitudes, we are then faced with the question whether we already know all possible types of linear symmetries or whether there are new types of symmetries which we can yet discover. We argue that for an important class of these symmetries there can be no new types of symmetries, except for one which we call scaling symmetry. We also attempt to point out all types of symmetries which other classes have. In analyzing the above question we are led to a simple and consistent formalism for describing linear symmetries which takes linearity as the starting point for dealing with these symmetries. In this approach all linear symmetries are formally treated on an equal footing. General results on linear symmetries are derived: These symmetries are then classified into three main classes, and an effort is made to discover the characteristic properties of the individual classes.  相似文献   
569.
Burn is one of the physically debilitating injuries that can be potentially fatal; therefore, providing appropriate coverage in order to reduce possible mortality risk and accelerate wound healing is mandatory. In this study, collagen/exo-polysaccharide (Col/EPS 1–3%) scaffolds are synthesized from rainbow trout (Oncorhynchus mykiss) skins incorporated with Rhodotorula mucilaginosa sp. GUMS16, respectively, for promoting Grade 3 burn wound healing. Physicochemical characterizations and, consequently, biological properties of the Col/EPS scaffolds are tested. The results show that the presence of EPS does not affect the minimum porosity dimensions, while raising the EPS amount significantly reduces the maximum porosity dimensions. Thermogravimetric analysis (TGA), FTIR, and tensile property results confirm the successful incorporation of the EPS into Col scaffolds. Furthermore,the biological results show that the increasing EPS does not affect Col biodegradability and cell viability, and the use of Col/EPS 1% on rat models displays a faster healing rate. Finally, histopathological examination reveals that the Col/EPS 1% treatment accelerates wound healing, through greater re-epithelialization and dermal remodeling, more abundant fibroblast cells and Col accumulation. These findings suggest that Col/EPS 1% promotes dermal wound healing via antioxidant and anti-inflammatory activities, which can be a potential medical process in the treatment of burn wounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号