首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   695篇
  免费   27篇
  国内免费   1篇
化学   437篇
晶体学   2篇
力学   11篇
数学   178篇
物理学   95篇
  2024年   1篇
  2023年   8篇
  2022年   43篇
  2021年   43篇
  2020年   27篇
  2019年   31篇
  2018年   33篇
  2017年   19篇
  2016年   41篇
  2015年   30篇
  2014年   29篇
  2013年   56篇
  2012年   51篇
  2011年   52篇
  2010年   35篇
  2009年   28篇
  2008年   46篇
  2007年   27篇
  2006年   21篇
  2005年   17篇
  2004年   15篇
  2003年   16篇
  2002年   15篇
  2001年   2篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1985年   2篇
  1975年   2篇
  1972年   1篇
  1969年   1篇
  1965年   1篇
  1960年   1篇
排序方式: 共有723条查询结果,搜索用时 15 毫秒
711.
A variety of N-(1-methoxyalkyl)amides react with benzotriazole in the presence of PPh3·HBF4 and organic bases (Hünig's base, DBU or DABCO) or solid-state-supported bases (SiO2-Pip or IRA-67) in CHCl3 to give N-[1-(benzotriazol-1-yl)alkyl]amides in good yields. The most convenient and efficient procedure for obtaining N-[1-(benzotriazol-1-yl)alkyl]amides consists, however, of the addition of benzotriazole sodium salt to a solution of crude 1-(N-acylamino)alkyltriphenylphosphonium salt, obtained in situ from N-(1-methoxyalkyl)amides and PPh3·HBF4. A combination of these reactions with the recently described electrochemical decarboxylative α-methoxylation of N-acyl-α-amino acids in the presence of SiO2-Pip enables an effective two-pot transformation of N-acyl-α-amino acids to N-[1-(benzotriazol-1-yl)alkyl]amides.  相似文献   
712.
We carried out simulations of a polymer chain using molecular dynamics algorythm. As a model we used a three-dimensional set monomers (electrically charged material points) connected with its nearest neighbours by harmonic potential. Additionally all pairs of segments interacts by the Lennard-Jones (LJ) and Coulomb forces. The aim of the simulation was to determine chain conformation and other basic properties like radius of gyration and moment of inertia for various polymer length and electric charge distribution.Presented model could be alternative tool for structure prediction to typically used ones based on AMBER 99 [1] or another advanced force field.  相似文献   
713.

The unique properties of graphene make it a very attractive application, although there are still no commercial products in which graphene would play a key role. Good thermal conductivity is undoubtedly one of the attributes which can be easily used both in materials involving large monoatomic layers, that are very difficult to obtain, as well as multilayer graphene flakes, which have been commercially available on the market for several years. The article presents the results of tests on the characteristic thermal properties of composites with the addition of 2–15% of multilayer graphene (MLG) crystals. The motivation of the study was literature reports showing the possibility of increasing the thermal conductivity of composites with MLG participation in the copper matrix. Since the production of composites with increased properties is associated with obtaining a strong orientation of the flakes in the structure, composites with hBN flakes exhibiting significantly worse but also directional thermal properties were produced for comparison. The paper showed a strong influence of flake morphology on the possibility of creating a directional structure. The obtained Cu/MLG composites with the addition of only 2% MLG were characterized by an increase in the thermal conductivity coefficient of about 30% in relation to sinters without the participation of MLG.

  相似文献   
714.
In this paper, we report an advanced long‐life lithium ion battery, employing a Pyr14TFSI‐LiTFSI non‐flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn‐C) nanocomposite anode, and a layered LiNi1/3Co1/3Mn1/3O2 (NMC) cathode. The IL‐based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel–Tammann–Fulcher (VTF) trend. Lithium half‐cells employing the Sn‐C anode and NMC cathode in the Pyr14TFSI‐LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn‐C electrodes are combined into a cathode‐limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g?1 and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL‐based lithium ion cells are suitable batteries for application in electric vehicles.  相似文献   
715.
Two new complexes fac-[Re(NCS)(CO)3(N,N)] (N,N = 2,2'-bipyridine (bpy), di-iPr-N,N-1,4-diazabutadiene (iPr-DAB)) were synthesized and their molecular structures determined by X-ray diffraction. UV-vis absorption, resonance Raman, emission, and picosecond time-resolved IR spectra were measured experimentally and calculated with TD-DFT. A good agreement between experimental and calculated ground- and excited-state spectra is obtained, but only if the solvent (MeCN) is included into calculations and excited state structures are fully optimized at the TD-DFT level. The lowest excited states of the bpy and iPr-DAB complexes are assigned by TD-DFT as 3aA' by comparison of calculated and experimental IR spectra. Excited-state lifetimes of 23 ns and ca. 625 ps were determined for the bpy and DAB complex, respectively, in a fluid solution at room temperature. Biexponential emission decay (1.3, 2.7 micros) observed for [Re(NCS)(CO)3(bpy)] in a 77 K glass indicates the presence of two unequilibrated emissive states. Low-lying electronic transitions and excited states of both complexes have a mixed NCS --> N,N ligand-to-ligand and Re --> N,N metal-to-ligand charge-transfer character (LLCT/MLCT). It originates in mixing between Re d(pi) and NCS pi characters in high-lying occupied MOs. Experimentally, the LLCT/MLCT mixing in the lowest excited state is manifested by shifting the nu(CO) and nu(NC) IR bands to higher and lower wavenumbers, respectively, upon excitation. Resonant enhancement of both nu(CO) and nu(NC) Raman bands indicates that the same LLCT/MLCT character mixing occurs in the lowest allowed electronic transition.  相似文献   
716.
Interfacial interactions between liquid crystal (LC) and two-dimensional (2D) materials provide a platform to facilitate novel optical and electronic material properties. These interactions are uniquely sensitive to the local energy landscape of the atomically thick 2D surface, which can be strongly influenced by defects that are introduced, either by design or as a byproduct of fabrication processes. Herein, we present density functional theory (DFT) calculations of the LC mesogen 4-cyan-4′-pentylbiphenyl (5CB) on graphene in the presence of a monovacancy (MV-G). We find that the monovacancy strengthens the binding of 5CB in the planar alignment and that the structure is lower in energy than the corresponding homeotropic structure. However, if the molecule is able to approach the monovacancy homeotropically, 5CB undergoes a chemical reaction, releasing 4.5 eV in the process. This reaction follows a step-by-step process gradually adding bonds, inserting the 5CB cyano group into MV-G. We conclude that this irreversible insertion reaction is likely spontaneous, potentially providing a new avenue for controlling both LC behavior and graphene properties.  相似文献   
717.
N-acyliminium-type cations are examples of highly reactive intermediates that are willingly used in organic synthesis in intra- or intermolecular α-amidoalkylation reactions. They are usually generated in situ from their corresponding precursors in the presence of acidic catalysts (Brønsted or Lewis acids). In this context, 1-aminoalkyltriarylphosphonium derivatives deserve particular attention. The positively charged phosphonium moiety located in the immediate vicinity of the N-acyl group significantly facilitates Cα-P+ bond breaking, even without the use of catalyst. Moreover, minor structural modifications of 1-aminoalkyltriarylphosphonium derivatives make it possible to modulate their reactivity in a simple way. Therefore, these types of compounds can be considered as smart synthetic equivalents of N-acyliminium-type cations. This review intends to familiarize a wide audience with the unique properties of 1-aminoalkyltriarylphosphonium derivatives and encourage their wider use in organic synthesis. Hence, the most important methods for the preparation of 1-aminoalkyltriarylphosphonium salts, as well as the area of their potential synthetic utilization, are demonstrated. In particular, the structure–reactivity correlations for the phosphonium salts are discussed. It was shown that 1-aminoalkyltriarylphosphonium salts are not only an interesting alternative to other α-amidoalkylating agents but also can be used in such important transformations as the Wittig reaction or heterocyclizations. Finally, the prospects and limitations of their further applications in synthesis and medicinal chemistry were considered.  相似文献   
718.
Research on Chemical Intermediates - This paper discusses the use of double- carrier supported liquid membrane (DCSLM) for extraction of Cr(III) ions, using the D2EHPA/CYANEX272 mixture as the...  相似文献   
719.
A series of N-skatyltryptamines was synthesized and their affinities for serotonin and dopamine receptors were determined. Compounds exhibited activity toward 5-HT1A, 5-HT2A, 5-HT6, and D2 receptors. Substitution patterns resulting in affinity/activity switches were identified and studied using homology modeling. Chosen hits were screened to determine their metabolism, permeability, hepatotoxicity, and CYP inhibition. Several D2 receptor antagonists with additional 5-HT6R antagonist and agonist properties were identified. The former combination resembled known antipsychotic agents, while the latter was particularly interesting due to the fact that it has not been studied before. Selective 5-HT6R antagonists have been shown previously to produce procognitive and promnesic effects in several rodent models. Administration of 5-HT6R agonists was more ambiguous—in naive animals, it did not alter memory or produce slight amnesic effects, while in rodent models of memory impairment, they ameliorated the condition just like antagonists. Using the identified hit compounds 15 and 18, we tried to sort out the difference between ligands exhibiting the D2R antagonist function combined with 5-HT6R agonism, and mixed D2/5-HT6R antagonists in murine models of psychosis.  相似文献   
720.
Electron–electron interactions are at the heart of chemistry and understanding how to control them is crucial for the development of molecular-scale electronic devices. Here, we investigate single-electron tunneling through a redox-active edge-fused porphyrin trimer and demonstrate that its transport behavior is well described by the Hubbard dimer model, providing insights into the role of electron–electron interactions in charge transport. In particular, we empirically determine the molecule''s on-site and inter-site electron–electron repulsion energies, which are in good agreement with density functional calculations, and establish the molecular electronic structure within various oxidation states. The gate-dependent rectification behavior confirms the selection rules and state degeneracies deduced from the Hubbard model. We demonstrate that current flow through the molecule is governed by a non-trivial set of vibrationally coupled electronic transitions between various many-body ground and excited states, and experimentally confirm the importance of electron–electron interactions in single-molecule devices.

Experimental studies of electron transport through an edge-fused porphyrin oligomer in a graphene junction are interpreted within a Hubbard dimer framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号