This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation. 相似文献
Pyrolysis is a commonly used method for the recovery of used lubricating oil (ULO), which should be kinetically improved by a catalyst, due to its high level of energy consumption. In this research, the catalytic effects of carbon nanotube (CNT) and graphene nanoplatelets on the pyrolysis of ULO were studied through thermogravimetric analysis. First, the kinetic parameters of ULO pyrolysis including activation energy were calculated to be 170.12 and 167.01 kJ mol?1 by FWO and KAS methods, respectively. Then, the catalytic effects of CNT and graphene nanoplatelets on pyrolysis kinetics were studied. While CNT had a negligible effect on the pyrolysis process, graphene nanoplatelets significantly reduced the temperature of maximum conversion during pyrolysis from 400 to 350 °C, due to high thermal conductivity and homogenous heat transfer in the pyrolysis process. On the other hand, graphene nanoplatelets maximized the rate of conversion of highly volatile components at lower temperatures (<?100 °C), which was mainly due to the high affinity of these components toward graphene nanoplatelets and also the effect of nanoplatelets’ edges which have free tails and can bond with other molecules. Moreover, graphene nanoplatelets decreased the activation energy of the conversion to 154.48 and 152.13 kJ mol?1 by FWO and KAS methods, respectively.
Russian Journal of Organic Chemistry - A simple and eco-friendly catalytic alternative has been proposed for one-pot three-component synthesis of 4H-pyrane and spiro-oxindole derivatives, as two... 相似文献
A simple, sensitive and accurate method was developed for solid-phase extraction and preconcentration of trace levels of gold in various samples. It is based on the adsorption of gold on modified oxidized multi-walled carbon nanotubes prior to its determination by graphite furnace atomic absorption spectrometry. The type and volume of eluent solution, sample pH value, flow rates of sample and eluent, sorption capacity and breakthrough volume were optimized. Under these conditions, the method showed linearity in the range of 0.2–6.0 ng L−1 with coefficients of determination of >0.99 in the sample. The relative standard deviation for seven replicate determinations of gold (at a level of 0.6 ng L−1) is ±3.8 %, the detection limit is 31 pg L−1 (in the initial solution and at an S/N ratio of 3; for n = 8), and the enrichment factor is 200. The sorption capacity of the modified MWCNTs for gold(III) is 4.15 mg g−1. The procedure was successfully applied to the determination of gold in (spiked) water samples, human hair, human urine and standard reference material with recoveries ranging from 97.0 to 104.2 %.
A mild and efficient tandem process for the synthesis of new highly substituted 2-pyrones starting from commercially available 2-arylacetic acids has been developed. The synthesis is based on the Knoevenagel condensation of 1,3-cyclohexadiones with various β-formyl-esters, followed by lactonization in the presence of nano ZnO (20 mol %). Moderate to high yields and readily available cheap starting materials are the key features of the present method. 相似文献
This paper describes the synthesis of a molecularly imprinted polymer by chemical oxidation of pyrrole as the functional monomer, and at the presence of guaifenesin as the template. The prepared polymer was used as adsorbent in molecularly imprinted solid‐phase extraction followed by spectrophotometric determination. Different parameters in the solid‐phase extraction including sample pH, adsorbent weight, washing solution, and elution solvent were studied to determine optimum conditions for isolation and enrichment of guaifenesin. The results showed guaifenesin was quantitatively adsorbed on the molecularly imprinted polymer at pH 6.0 and completely eluted with an ethanol–water solution (50% v/v). An enrichment factor of four with satisfactory recoveries (87.0–95.0%) was obtained. The solid‐phase extraction columns could be used for up to six consecutive elution‐loading cycles without significant decreases in the analyte recoveries. The method had a dynamic range of 3.0 × 10?6–1.5 × 10?4 mol/L with a limit of detection and limit of quantification of 1.4×10?6 and 4.5×10?6 mol/L, respectively. The proposed procedure was used for the extraction and determination of guaifenesin in different pharmaceutical formulations, with satisfying results being achieved. 相似文献
An efficient synthesis of polycyclic indole derivatives is achieved via domino Knoevenagel–hetero‐Diels–Alder reaction of O‐acrylated salicylaldehyde derivatives with dihydroindole‐2‐thiones in H2O as solvent. The products are formed in good‐to‐excellent yields with high regio‐ and stereoselectivity. 相似文献